A single-point diamond turning machine was used to make grooves on (111) p-type single-crystal silicon wafers at room temperature. Scratch tests have been performed with both sharp (Vickers and conical) diamond tools, and a spherical (Rockwell) diamond tool. Our results showed that material removal mechanisms differed between these tools. Pressure-induced metallization of Si allows the ductile regime mechanical micromachining of wafer surfaces. Raman microspectroscopy and electron microscopy were used to determine the machining parameters that do not introduce cracking or other types of damage. The surface of the groove, after machining, was covered by a mixture of metastable, high-pressure silicon phases and amorphous silicon. Further, these phases can be transformed into cubic silicon by annealing. The maximum depth of cut in the ductile regime has been determined for the given scratch test conditions and tools. The developed technique can be used to machine Ge, GaAs and other semiconductors. Applications drawing from this research are many. For example, channels for microfluidic devices can be engraved with a channel cross-section that is determined by the shape of the tool, which allows patterns that cannot be produced using etching. There are no limitations on the channel length or direction, and the channel width can vary from potentially a few nanometres to several micrometres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.