Automobiles are equipped with Electronic Control Units (ECU) that communicate via in-vehicle network protocol standards such as Controller Area Network (CAN). These protocols are designed under the assumption that separating invehicle communications from external networks is sufficient for protection against cyber attacks. This assumption, however, has been shown to be invalid by recent attacks in which adversaries were able to infiltrate the in-vehicle network. Motivated by these attacks, intrusion detection systems (IDSs) have been proposed for in-vehicle networks that attempt to detect attacks by making use of device fingerprinting using properties such as clock skew of an ECU. In this paper, we propose the cloaking attack, an intelligent masquerade attack in which an adversary modifies the timing of transmitted messages in order to match the clock skew of a targeted ECU. The attack leverages the fact that, while the clock skew is a physical property of each ECU that cannot be changed by the adversary, the estimation of the clock skew by other ECUs is based on network traffic, which, being a cyber component only, can be modified by an adversary. We implement the proposed cloaking attack and test it on two IDSs, namely, the current state-of-the-art IDS and a new IDS that we develop based on the widely-used Network Time Protocol (NTP). We implement the cloaking attack on two hardware testbeds, a prototype and a real connected vehicle, and show that it can always deceive both IDSs. We also introduce a new metric called the Maximum Slackness Index to quantify the effectiveness of the cloaking attack even when the adversary is unable to precisely match the clock skew of the targeted ECU.
This paper presents a new masquerade attack called the cloaking attack and provides formal analyses for clock skewbased Intrusion Detection Systems (IDSs) that detect masquerade attacks in the Controller Area Network (CAN) in automobiles. In the cloaking attack, the adversary manipulates the message inter-transmission times of spoofed messages by adding delays so as to emulate a desired clock skew and avoid detection. In order to predict and characterize the impact of the cloaking attack in terms of the attack success probability on a given CAN bus and IDS, we develop formal models for two clock skew-based IDSs, i.e., the state-of-the-art (SOTA) IDS and its adaptation to the widely used Network Time Protocol (NTP), using parameters of the attacker, the detector, and the hardware platform. To the best of our knowledge, this is the first paper that provides formal analyses of clock skew-based IDSs in automotive CAN. We implement the cloaking attack on two hardware testbeds, a prototype and a real vehicle (the University of Washington (UW) EcoCAR), and demonstrate its effectiveness against both the SOTA and NTP-based IDSs. We validate our formal analyses through extensive experiments for different messages, IDS settings, and vehicles. By comparing each predicted attack success probability curve against its experimental curve, we find that the average prediction error is within 3.0% for the SOTA IDS and 5.7% for the NTP-based IDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.