MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and may contribute to the development and progression of many infective diseases including human immunodeficiency virus 1 (HIV-1) infection. The Tat protein is fundamental to viral gene expression. In this study, our goal was to investigate the regulation of a specific miRNA (known as miR-217) in multinuclear activation of galactosidase indicator (MAGI) cells and explore the mechanisms by which miR-217 influenced Tat-induced HIV-1 transactivation through down-regulation of SIRT1 expression. We showed that miR-217 was up-regulated when Tat was expressed in multinuclear activation of galactosidase indicator cells. Forced expression of "miR-217 mimics" increased Tat-induced LTR transactivation. In addition, miR-217 significantly inhibited SIRT1 protein expression by acting on the 3'-UTR of the SIRT1 mRNA. In turn, the decrease in SIRT1 protein abundance provoked by miR-217 affected two important types of downstream signaling molecules that were regulated by Tat. Lower expression of SIRT1 caused by miR-217 enhanced Tat-induced phosphorylation of IKK and p65-NFkB and also exacerbated the loss of AMPK phosphorylation triggered by Tat. Our results uncover previously unknown links between Tat and a specific host cell miRNA that targets SIRT1. We also demonstrate that this regulatory mechanism impinges on p65-NFkB and AMPK signaling: two important host cell pathways that influence HIV-1 pathogenesis. Our results also suggest that strategies to augment SIRT1 protein expression by down-regulation of miR-217 may have therapeutic benefits to prevent HIV-1 replication.
Chromatin remodeling, especially in relation to the transactivator Tat, is an essential event for human immunodeficiency virus-1 (HIV-1) transcription. Curcumin has been shown to suppress pathways linked to HIV-1 replication. We investigated whether curcumin had the potential to inhibit Tat-induced long terminal repeat region (LTR) transactivation. As we shown, curcumin inhibited Tat-induced LTR transcativation, while knockdown of histone deacetylase 1 (HDAC1) by siRNA potentiated Tat-induced HIV-1 transcativation. Curcumin reversed Tat-induced down-regulation of HDAC1 expression in multinuclear activation of galactosidase indicator (MAGI) cells. Treatment with curcumin reversed Tat-induced dissociation of HDAC1 from LTR; and curcumin caused a decline in the binding of p65/NFκB to LTR promoters stimulated by Tat. Curcumin attenuated Tat-induced p65 phosphorylation and IKK phosphorylation. Curcumin reversed Tat-mediated reduction in AMPK activation and downstream acetyl-CoA carboxylase (ACC) activation. Collectively, our data provide new insights into understanding of the molecular mechanisms of curcumin inhibited Tat-regulated transcription, suggesting that targeting AMPK/HDAC1/NFκB pathway could serve as new anti-HIV-1 agents.
a b s t r a c tMicroRNAs (miRNAs) regulate gene expression and may contribute to HIV-1 infection. In this study, our goal was to investigate the mechanisms by which miR-34a influenced Tat-induced HIV-1 transactivation through the SIRT1/NFjB pathway. We showed that Tat induced up-regulation of miR-34a expression in TZM-bl cells. MiR-34a significantly inhibited SIRT1 expression. Overexpression of miR-34a increased Tat-induced LTR transactivation. Forced expression of miR-34a decreased SIRT1 protein expression and consequently diminished Tat-induced acetylation of p65, while treatment with a miR-34a inhibitor had the opposite effect. These results suggest that regulating SIRT1 by down-regulation of miR-34a levels may be a therapeutic strategy against HIV-1 replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.