Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm.
We suggest a silicon nanowire (SiNW) photodetector side-contacted with hemispherical Au nanoantennas (NAs) that can remarkably amplify the intensity of the near-infrared optical field. The plasmonic NA suppresses visible-range guided mode excitation in SiNW, which enables our photodetector to possess a near-infrared-selective response and overcome the inherent poor optical absorption of Si. The NA can form Schottky contacts with SiNWs for enhancing carrier collection. The vertical NW array also has the geometrically beneficial effects of wide tolerance in light polarization with reduced material consumption.
Thermal properties of one dimensional nanostructures are of interest for thermoelectric energy conversion. Thermoelectric efficiency is related to non dimensional thermoelectric figure of merit, ZT = (S^2 σT)/k where S, σ, k are the Seebeck coefficient, electrical conductivity and thermal conductivity respectively. These physical properties are interdependent, and hence making ZT of a material high is very challenging work. However, when the size of nanostructure is comparable to the wavelength and mean free path of energy carriers, it is feasible to avoid such interdependence to enhance ZT energy conversion. [1–3]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.