Summary The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation states in a strand-specific manner and requires only attomole RNA quantities. The polyadenylation profiles revealed an abundance of unannotated polyadenylation sites, alternative polyadenylation patterns, and regulatory element-associated polyA+ RNAs. We observed differences in sequence composition surrounding canonical and non-canonical human polyadenylation sites, suggesting novel non-coding RNA-specific polyadenylation mechanisms in humans. Furthermore, we observed the correlation level between sense and antisense transcripts to depend on gene expression levels, supporting the view that overlapping transcription from opposite strands may play a regulatory role. Our data provide a comprehensive view of the polyadenylation state and overlapping transcription.
The continuing discoveries of potentially active small RNAs at an unprecedented rate using high-throughput sequencing have raised the need for methods that can reliably detect and quantitate the expression levels of small RNAs. Currently, northern blot is the most widely used method for validating small RNAs that are identified by methods such as high-throughput sequencing. We describe a new northern blot-based protocol (LED) for small RNA (∼15–40 bases) detection using digoxigenin (DIG)-labeled oligonucleotide probes containing locked nucleic acids (LNA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide for cross-linking the RNA to the membrane. LED generates clearly visible signals for RNA amounts as low as 0.05 fmol. This method requires as little as a few seconds of membrane exposure to outperform the signal intensity using overnight exposure of isotope-based methods, corresponding to ∼1000-fold improvement in exposure-time. In contrast to commonly used radioisotope-based methods, which require freshly prepared and hazardous probes, LED probes can be stored for at least 6 months, facilitate faster and more cost-effective experiments, and are more environmentally friendly. A detailed protocol of LED is provided in the Supplementary Data.
We present a comprehensive map of over 1 million polyadenylation sites and quantify their usage in major cancers and tumor cell lines using direct RNA sequencing. We built the Expression and Polyadenylation Database to enable the visualization of the polyadenylation maps in various cancers and to facilitate the discovery of novel genes and gene isoforms that are potentially important to tumorigenesis. Analyses of polyadenylation sites indicate that a large fraction (∼30%) of mRNAs contain alternative polyadenylation sites in their 3′ untranslated regions, independent of the cell type. The shortest 3′ untranslated region isoforms are preferentially upregulated in cancer tissues, genome-wide. Candidate targets of alternative polyadenylation-mediated upregulation of short isoforms include POLR2K, and signaling cascades of cell–cell and cell–extracellular matrix contact, particularly involving regulators of Rho GTPases. Polyadenylation maps also helped to improve 3′ untranslated region annotations and identify candidate regulatory marks such as sequence motifs, H3K36Me3 and Pabpc1 that are isoform dependent and occur in a position-specific manner. In summary, these results highlight the need to go beyond monitoring only the cumulative transcript levels for a gene, to separately analysing the expression of its RNA isoforms.
Short (< 200 nt) RNA (sRNA) profiling of human cells using various technologies demonstrates unexpected complexity of sRNAs with 100's of thousands of sRNA species present 1, 2 , 3 , 4. Genetic and in vitro studies argue that these RNAs are not merely degradation products of longer transcripts but could indeed have function 1,2,5 . Furthermore, profiling of RNAs, including the sRNAs, can reveal not only novel transcripts, but also make clear predictions about the existence and properties of novel biochemical pathways operating in a cell. For example, short RNA profiling in human cells suggested existence of an unknown capping mechanism operating on cleaved RNA 2 a biochemical component of which was later identified 6 . Here we show that human cells contain a novel type of sRNAs that have non-genomically encoded 5' polyU tails. Presence of these RNAs at the termini of genes, specifically at the very 3' ends of known mRNAs strongly argues for the presence of a yet uncharacterized endogenous biochemical pathway in a cell that can copy RNA. We show that this pathway can operate on multiple genes, with specific enrichment towards transcripts encoding components of the translational machinery. Finally we show that genes are also flanked by sense, 3' polyadenylated sRNAs that are likely to be capped.To date, all sequencing reports characterizing sRNAs rely on conversion of RNA into cDNA employing ligation and/or amplification steps 7 . These steps could introduce bias in detecting
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.