A gold-palladium (AuPd) solid solution alloy was successfully deposited on the genetically engineered tobacco mosaic virus (TMV1Cys) by the biosorption of Au(III) and Pd(II) precursors and the reduction of the Au(III) and Pd(II) to their respective metals or metal alloy. The resulting morphologies of alloy nanoparticles deposited on the TMV1Cys were observed with transmission electron microscopy (TEM), and the AuPd alloy formation was supported with surface plasmon resonance (SPR) and selected area electron diffraction (SAED). In addition, selected alloy nanoparticles on the TMV1Cys were analyzed further with electron energy loss spectroscopy (EELS) to confirm the presence of gold and palladium. Our result implies that biotemplated metal mineralization is a potentially useful methodology to prepare alloy nanoparticles.
Our data suggest that inadequate post-procedural MSA with increased neointimal hyperplasia may cause the SB ostium to be the most frequent site of restenosis after percutaneous coronary intervention on bifurcation lesions.
A comprehensive method to prepare a one-dimensional (1D) metal−organic framework (MOF) has attracted research interest because the 1D MOFs are useful as precursor materials for the preparation of highly porous carbon nanorods with outstanding electrical conductivity and mechanical strength, making them particularly suitable for electrochemical applications. Herein, the synthesis of 1D zeolitic imidazolate framework-8 (ZIF-8) nanorods is reported using the metal-induced self-assembly templates of imidazole-functionalized perylenetetracarboxylic diimide (PDI-Hm). The size of PDI-Hm self-assemblies is finely tuned on the nanoscale by the method of metal-induced self-assembly whose surface-exposed metal ions were further exploited as nucleation sites for the growth of ZIF-8. Versatility of the metal-induced self-assembly template for the growth of other 1D MOFs was demonstrated using various transition-metal ions on demands. The size-controlled ZIF-8 nanorods were applied further as a precursor material to produce porous, nitrogen-doped carbon nanorods through the carbonization. The carbon nanorods show decent supercapacitor electrode material performance, with enhanced specific capacitance of 292.2 F g −1 , because of their unique 1D feature with reduced charge transfer resistance and large specific surface area derived from a downscaled template size under 100 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.