Unmodified natural rubber is not suitable for any elstomeric applications. Therefore, it is appropriate to modify natural rubber chemically to enhance the stability, which can be termed as vulcanization. Incorporation of fibers/fabrics is a common method to increase the stability of natural rubber along with chemical modification. Natural rubber-based composites have been prepared by the addition of silk fabric into natural rubber. The matrix material for the composite is glutaraldehyde cured natural rubber. Silk is an ecofriendly and biodegradable material with excellent tensile strength. When such kind of fabric is introduced into the vulcanized rubber as the matrix, all the physical properties were found to be enhanced considerably. Tensile properties in terms of ultimate tensile strength, elongation at break, and modulus of elasticity are measured for the composites of natural rubber/silk fabric at various glutaraldehyde concentrations. Thermogravimetric analysis and temperature scanning stress relaxation techniques are employed to evaluate the thermal stability of the resulting composites. Effects of glutaraldehyde addition on the physical properties of the composite were studied in detail. Considerable enhancement in the stability of natural rubber in terms of tensile properties, thermal stability, and solvent resistance is noticed up on the incorporation of silk fabric as well as glutaraldehyde curing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.