Nanomaterials are attracted a great deal of attention from scientific community due its unique properties and applications. The small size ferrites have opened up the door for intensive research to utilize their properties for biomedical applications. Ferrite nanomaterials like MgFe
2
O
4
and its silver doped nanocomposites (Ag– MgFe
2
O
4
) have been prepared using solid state combustion method using polyvinyl alcohol (PVA) as a fuel. The structure of as prepared ferrites and its silver doped nanocomposites were characterized using X-ray diffraction (XRD) tool and morphology by Scanning Electron Micrograph (SEM) tool respectively. Presence of the metals in the ferrite and its composite was confirmed by EDX pattern. Bonding nature in the composite is well studied by Fourier transform infrared (FT-IR) tool. Antibacterial activity study of the nanocomposite is carried out against various bacteria. Ag doped magnesium ferrite shows moderate activity against bacteria.
Biological reduction method using plant extract for the synthesis of metal and metal oxides are attracted much to the researchers due to its simplicity, which integrates the chemical technology. The special attention is given to the green synthesis of nanoparticles by easily available plants with eco-friendly system compared to other conventional methods. Silver-gold nanocomposite (Ag–Au NCp's) is synthesized by biological reduction of silver nitrate and gold chloride with biological reduction method. These metal salts are simultaneously reduced by betle leaf extract to form respective silver and gold nanocomposite. The structure and morphology of as prepared Ag–Au NCp's sample was characterized by employing powder X-ray diffraction (XRD) tool and by Scanning Electron Micrograph (SEM) tool respectively. Fourier Transform infrared (FTIR) spectral study was undertaken to know the bonding in the prepared silver sample. Energy dispersive X-ray analysis (EDX) study was undertaken to know the formation Ag–Au NCp's. Antibacterial studies are undertaken for the said nanocomposite to know its activity against bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.