Despite the ubiquity of dancing and synchronized movement to music, relatively few studies have examined cognitive representations of musical rhythm and meter among listeners from contrasting cultures. We aimed to disentangle the contributions of culture-general and culture-specific influences by examining American and Turkish listeners' detection of temporal disruptions (varying in size from 50-250 ms in duration) to three types of stimuli: simple rhythms found in both American and Turkish music, complex rhythms found only in Turkish music, and highly complex rhythms that are rare in all cultures. Americans were most accurate when detecting disruptions to the simple rhythm. However, they performed less accurately but comparably in both the complex and highly complex conditions. By contrast, Turkish participants performed accurately and indistinguishably in both simple and complex conditions. However, they performed less accurately in the unfamiliar, highly complex condition. Together, these experiments implicate a crucial role of culture-specific listening experience and acquired musical knowledge in rhythmic pattern perception.
Objective. Similar to patients with systemic lupus erythematosus, autoimmune MRL/lpr mice spontaneously develop behavioral deficits and pathologic changes in the brain. Given that the disease-associated brain atrophy in this model is not well understood, the present study was undertaken to determine the time course of morphometric changes in major brain structures of autoimmune MRL/lpr mice.Methods. Computerized planimetry and highresolution magnetic resonance imaging (MRI) were used to compare the areas and volumes of brain structures in cohorts of mice that differ in severity of lupus-like disease.Results. A thinner cerebral cortex and smaller cerebellum were observed in the MRL/lpr substrain, even before severe autoimmunity developed. With progression of the disease, the brain area of coronal sections became smaller and the growth of the hippocampus was retarded, which likely contributed to the increase in the ventricle area:brain area ratio. MRI revealed reduced volume across different brain regions, with the structures in the vicinity of the ventricular system particularly affected. The superior colliculus, periaqueductal gray matter, pons, and midbrain were among the regions most affected, whereas the volumes of the parietal-temporal lobe, parts of the cerebellum, and lateral ventricles in autoimmune MRL/lpr mice were comparable with values in congenic controls.Conclusion. These results suggest that morphologic alterations in the brains of MRL/lpr mice are a consequence of several factors, including spontaneous development of lupus-like disease. A periventricular pattern of parenchymal damage is consistent with the cerebrospinal fluid neurotoxicity, limbic system pathologic features, and deficits in emotional reactivity previously documented in this model. Neuropsychiatric (NP) manifestations are a common and serious complication of systemic lupus erythematosus (SLE). Contemporary imaging techniques have revealed various abnormalities in patients withSLE, including lesions in the periventricular and subcortical regions (1,2), hypoperfusion (3), and regional metabolic abnormalities (4). Brain atrophy is the most frequent observation (5) and is likely a consequence of widespread neuronal and glial damage (6). Consistent with these reports, recent studies on water diffusivity indicate a genuine loss of brain-tissue integrity in patients with NPSLE/central nervous system (CNS) lupus (7). However, the lack of understanding of CNS damage led to development of animal models of acute and chronic lupus and dissection of complex pathogenic circuits (8).MRL/MpJTnfrsf6 lpr (MRL/lpr) mice and MRL/ MpJϩ/ϩ (MRLϩ/ϩ) congenic control mice share more than 99.9% of their genome but differ in the onset of lupus-like manifestations. The 3-4-month difference in the time to onset allows discrimination of autoimmunityinduced functional and structural brain damage from epiphenomena associated with aging and with damage of vital peripheral organs (9). In addition to accelerated development of serologic signs of inflammation and aut...
Sham feeding produces a reversible increase in heart rate that is attributable to a decrease in neurocardiac parasympathetic activity despite its known ability to increase vagally mediated gastric acid secretion. These findings suggest that concurrent changes in cardiac and gastric function are modulated independently by vagal efferent fibres and that vagally mediated changes in organ function are stimulus- and organ-specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.