In the adult brain, neural stem cells proliferate within the subventricular zone before differentiating into migratory neuroblasts that travel along the rostral migratory stream (RMS) to populate the olfactory bulb with new neurons. Because neuroblasts have been shown to migrate to areas of brain injury, understanding the cues regulating this migration could be important for brain repair. Recent studies have highlighted an important role for endocannabinoid (eCB) signaling in the proliferation of the stem cell population, but it remained to be determined whether this pathway also played a role in cell migration. We now show that mouse migratory neuroblasts express cannabinoid receptors, diacylglycerol lipase ␣ (DAGL␣), the enzyme that synthesizes the endocannabinoid 2-arachidonoylglycerol (2-AG), and monoacylglycerol lipase, the enzyme responsible for its degradation. Using a scratch wound assay for a neural stem cell line and RMS explant cultures, we show that inhibition of DAGL activity or CB 1 /CB 2 receptors substantially decreases migration. In contrast, direct activation of cannabinoid receptors or preventing the breakdown of 2-AG increases migration. Detailed analysis of primary neuroblast migration by time-lapse imaging reveals that nucleokinesis, as well as the length and branching of the migratory processes are under dynamic control of the eCB system. Finally, similar effects are observed in vivo by analyzing the morphology of green fluorescent protein-labeled neuroblasts in brain slices from mice treated with CB 1 or CB 2 antagonists. These results describe a novel role for the endocannabinoid system in neuroblast migration in vivo, highlighting its importance in regulating an additional essential step in adult neurogenesis.
After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is a fundamental event controlling the proper integration of new neurons in a pre-existing synaptic network. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we show that the actin-bundling protein fascin is highly upregulated in mouse SVZ-derived migratory neuroblasts. Fascin-1ko mice display an abnormal RMS and a smaller OB. Bromodeoxyuridine labeling experiments show that lack of fascin significantly impairs neuroblast migration, but does not appear to affect cell proliferation. Moreover, fascin depletion substantially alters the polarized morphology of rat neuroblasts. Protein kinase C (PKC)-dependent phosphorylation of fascin on Ser39 regulates its actin-bundling activity. In vivo postnatal electroporation of phosphomimetic (S39D) or nonphosphorylatable (S39A) fascin variants followed by time-lapse imaging of brain slices demonstrates that the phospho-dependent modulation of fascin activity ensures efficient neuroblast migration. Finally, fluorescence lifetime imaging microscopy studies in rat neuroblasts reveal that the interaction between fascin and PKC can be modulated by cannabinoid signaling, which controls neuroblast migration in vivo. We conclude that fascin, whose upregulation appears to mark the transition to the migratory neuroblast stage, is a crucial regulator of neuroblast motility. We propose that a tightly regulated phospho/dephospho-fascin cycle modulated by extracellular signals is required for the polarized morphology and migration in neuroblasts, thus contributing to efficient neurogenesis.
Cell polarization is essential for neuronal development in both the embryonic and postnatal brain. Here, using primary cultures, in vivo postnatal electroporation and conditional genetic ablation, we show that the Ras-like small GTPase RalA and its effector, the exocyst, regulate the morphology and polarized migration of neural progenitors derived from the subventricular zone, a major neurogenic niche in the postnatal brain. Active RalA promotes the direct binding between the exocyst subunit Exo84 and the PDZ domain of Par6 through a non-canonical PDZ-binding motif. Blocking the Exo84-Par6 interaction impairs polarization in postnatal neural progenitors and cultured embryonic neurons. Our results provide the first in vivo characterization of RalA function in the mammalian brain and highlight a novel molecular mechanism for cell polarization. Given that the exocyst and the Par complex are conserved in many tissues, the functional significance of their interaction and its regulation by RalA are likely to be important in a wide range of polarization events.
Signalling through EGF, FGF and endocannabinoid (eCB) receptors promotes adult neurogenesis, and this can be modelled in culture using the Cor-1 neural stem cell line. In the present study we show that Cor-1 cells express a TGFβ receptor complex composed of the ActRIIB/ALK5 subunits and that a natural ligand for this receptor complex, GDF11, activates the canonical Smad2/3 signalling cascade and significantly alters the expression of ∼4700 gene transcripts within a few hours of treatment. Many of the transcripts regulated by GDF11 are also regulated by the EGF, FGF and eCB receptors and by the MAPK pathway – however, in general in the opposite direction. This can be explained to some extent by the observation that GDF11 inhibits expression of, and signalling through, the EGF receptor. GDF11 regulates expression of numerous cell-cycle genes and suppresses Cor-1 cell proliferation; interestingly we found down-regulation of Cyclin D2 rather than p27kip1 to be a good molecular correlate of this. GDF11 also inhibited the expression of numerous genes linked to cytoskeletal regulation including Fascin and LIM and SH3 domain protein 1 (LASP1) and this was associated with an inhibition of Cor-1 cell migration in a scratch wound assay. These data demonstrate GDF11 to be a master regulator of neural stem cell transcription that can suppress cell proliferation and migration by regulating the expression of numerous genes involved in both these processes, and by suppressing transcriptional responses to factors that normally promote proliferation and/or migration.
After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is crucial for the proper integration of newborn neurons in a pre-existing synaptic network and is believed to play a key role in infant human brain development. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we have investigated the function of drebrin, an actin-binding protein highly expressed in the RMS of the postnatal mammalian brain. Neuroblast migration was monitored both in culture and in brain slices obtained from electroporated mice by time-lapse spinning disk confocal microscopy. Depletion of drebrin using distinct RNAi approaches in early postnatal mice affects neuroblast morphology and impairs neuroblast migration and orientation in vitro and in vivo. Overexpression of drebrin also impairs migration along the RMS and affects the distribution of neuroblasts at their final destination, the OB. Drebrin phosphorylation on Ser142 by Cyclin-dependent kinase 5 (Cdk5) has been recently shown to regulate F-actin-microtubule coupling in neuronal growth cones. We also investigated the functional significance of this phosphorylation in RMS neuroblasts using in vivo postnatal electroporation of phosphomimetic (S142D) or non-phosphorylatable (S142A) drebrin in the SVZ of mouse pups. Preventing or mimicking phosphorylation of S142 in vivo caused similar effects on neuroblast dynamics, leading to aberrant neuroblast branching. We conclude that drebrin is necessary for efficient migration of SVZ-derived neuroblasts and propose that regulated phosphorylation of drebrin on S142 maintains leading process stability for polarized migration along the RMS, thus ensuring proper neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.