The application of nanoscale materials and structures, usually ranging from 1 to 100 nanometers (nm), is an emerging area of nanoscience and nanotechnology. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, textiles, environmental protection, and biotechnology is an area of constant interest. Recently, an awareness of general sanitation, contact disease transmission, and personal protection has led to the development of antimicrobial textiles. The development of antimicrobial cotton fabrics using Zinc oxide nanoparticles has been investigated in this present work. The ZnO nanoparticles were prepared by wet chemical method and were directly applied on to the 100% cotton woven fabric using pad-dry-cure method. The antibacterial activity of the finished fabrics was assessed qualitatively by agar diffusion and parallel streak method, quantitatively by percentage reduction test. The topographical analysis of the treated fabric and untreated fabric were studied and compared. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in both qualitative and quantitative tests. The SEM analysis revealed the embedding of ZnO nanoparticles in treated fabrics. The wash durability study of the treated fabric was also carried out and found to withstand up to 25 wash cycles.
Nanocomposites containing α-Bi2O3, β-Bi2O3 and Bi nanoparticles as nanofillers in vulcanized silicone resin as a matrix are prepared and their diagnostic X-ray attenuation property is studied. The nanocomposites are prepared using a simple solution casting technique, with nanofiller concentration varying from 2-50 wt%. Thermogravimetric analysis and differential scanning calorimetry are performed to study the thermal stability of the nanocomposites. The attenuation property is studied by exposing the nanocomposites containing α-Bi2O3, β-Bi2O3 and Bi nanoparticles to X-rays of energy 30-60 keV. Nanocomposites containing β-Bi2O3 nanoparticles are found to exhibit the highest attenuation than nanocomposites of α-Bi2O3 and Bi nanoparticles of similar concentration. Nanocomposites containing 50 wt% of β-Bi2O3 nanoparticles exhibit an X-ray attenuation of 93, 86, 71, 45 and 10% at an X-ray photon energy of 40, 45, 50, 55 and 59 keV, respectively. Further increase in photon energy is found to saturate the flat panel detector owing to the lower thickness of the nanocomposites. Analysis of high resolution X-ray radiographs of the nanocomposites confirms the uniform distribution of nanofillers in the matrix. Thermal analysis confirms the structural integrity and thermal stability of the nanocomposites. Heat flow curves also confirm the interaction of nanofillers with the matrix, corroborated by a change in the peak position and its endothermic/exothermic nature, corresponding to the phase transition of the nanofillers. It is also interpreted from thermal analysis of nanocomposites that the nanofillers interact with the matrix either by intercalating in the bridging polymer chain of silicone resin network structure or by occupying the interchain space. Thermal analysis of X-ray exposed nanocomposites shows no significant change in heat flow rates, thus, confirming the stability of the nanocomposites. Our study shows that nanocomposites containing β-Bi2O3 nanofiller are potential candidates for radiopaque fabrics which can find application in diagnostic X-ray shielding in mammography, dental scan, etc.
In an attempt to develop an alternate to leadbased X-ray shielding material, we describe the X-ray attenuation property of nanocomposites containing Gd 2 O 3 as nanofiller and silicone resin as matrix, prepared by a simple solution-casting technique. Gd 2 O 3 nanoparticles of size 30 and 56 nm are used at concentrations of 25 and 2.5 wt%. The nanoparticles and the nanocomposites are characterized using X-ray diffraction (XRD) studies, small angle X-ray spectroscopy (SAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The X-ray attenuation property of nanocomposites, studied using an industrial X-ray unit, shows that nanocomposites containing nanoparticles of size 56 nm (G2) exhibit better attenuation than nanocomposites containing nanoparticles of size 30 nm (G1), which is attributed to the greater interfacial interaction between the G2 nanofillers and silicone matrix. In the case of nanocomposites containing G1 nanoparticles, the interfacial interaction between the nanofiller and the matrix is so weak that it results in pulling out of nanofillers, causing voids in the matrix, which act as X-ray transparent region, thereby reducing the overall X-ray attenuation property of G1 nanocomposites. This is further corroborated from the AFM images of the nanocomposites. The weight loss and heat flow curves of pure silicone matrix and the nanocomposites containing Gd 2 O 3 nanoparticles of size 30 and 56 nm show the degradation of silicone resin, due to chain scission, between 403 and 622°C. The same onset temperature (403°C) of degradation of matrix with and without nanoparticles shows that the addition of nanofillers to the matrix does not deteriorate the thermal stability of the matrix. This confirms the thermal stability of nanocomposites. Therefore, our study shows that nanocomposites containing G2 nanoparticles are potential candidates for the development of X-ray opaque fabric material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.