Adenosine monophosphate-activated protein kinase (AMPK) is a potent metabolic regulator and an attractive target for antidiabetic activators. Here we report for the first that, trans-ferulic acid (TFA) is a potent dietary bioactive molecule of hydroxycinnamic acid derivative for the activation of AMPK with a maximum increase in phosphorylation (2.71/2.67 ± 0.10; p < .001 vs. high glucose [HG] control) in hyperglycemia-induced human liver cells (HepG2) and rat skeletal muscle cells (L6), where HG suppresses the AMPK pathway. It was also observed that TFA increased activation of AMPK in a doseand time-dependent manner and also increased the phosphorylation of acetyl-CoA carboxylase (ACC), suggesting that it may promotes fatty acid oxidation; however, pretreatment with compound C reversed the effect. In addition, TFA reduced the level of intracellular reactive oxygen species (ROS) and nitric oxide (NO) induced by hyperglycemia and subsequently increased the level of glutathione. Interestingly, TFA also upregulated the glucose transporters, GLUT2 and GLUT4, and inhibited c-Jun N-terminal protein kinase (JNK1/2) by decreasing the phosphorylation level in tested cells under HG condition. Our studies provide critical insights into the mechanism of action of TFA as a potential natural activator of AMPK under hyperglycemia.
Practical applicationsHydroxycinnamic acid derivatives possess various pharmacological properties and are found to be one of the most ubiquitous groups of plant metabolites in almost all dietary sources. However, the tissue-specific role and its mechanism under hyperglycemic condition remain largely unknown. The present study showed that TFA is a potent activator of AMPK under HG condition and it could be used as a therapeutic agent against hyperglycemia in type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.