We have analyzed a systematic flaw in the current system of gene identification: the oligo(dT) primer widely used for cDNA synthesis generates a high frequency of truncated cDNAs through internal poly(A) priming. Such truncated cDNAs may contribute to 12% of the expressed sequence tags in the current dbEST database. By using a synthetic transcript and real mRNA templates as models, we characterized the patterns of internal poly(A) priming by oligo(dT) primer. We further demonstrated that the internal poly(A) priming can be effectively diminished by replacing the oligo(dT) primer with a set of anchored oligo(dT) primers for reverse transcription. Our study indicates that cDNAs designed for genomewide gene identification should be synthesized by use of the anchored oligo(dT) primers, rather than the oligo(dT) primers, to diminish the generation of truncated cDNAs caused by internal poly(A) priming.
The number of genes in the human genome is still a controversial issue. Whereas most of the genes in the human genome are said to have been physically or computationally identified, many short cDNA sequences identified as tags by use of serial analysis of gene expression (SAGE) do not match these genes. By performing experimental verification of more than 1,000 SAGE tags and analyzing 4,285,923 SAGE tags of human origin in the current SAGE database, we examined the nature of the unmatched SAGE tags. Our study shows that most of the unmatched SAGE tags are truly novel SAGE tags that originated from novel transcripts not yet identified in the human genome, including alternatively spliced transcripts from known genes and potential novel genes. Our study indicates that by using novel SAGE tags as probes, we should be able to identify efficiently many novel transcripts͞novel genes in the human genome that are difficult to identify by conventional methods.
Using the serial analysis of gene expression technique, we surveyed transcriptomes of three major tissues (panicles, leaves, and roots) of a super-hybrid rice (Oryza sativa) strain, LYP9, in comparison to its parental cultivars, 93-11 (indica) and PA64s (japonica). We acquired 465,679 tags from the serial analysis of gene expression libraries, which were consolidated into 68,483 unique tags. Focusing our initial functional analyses on a subset of the data that are supported by full-length cDNAs and the tags (genes) differentially expressed in the hybrid at a significant level (P , 0.01), we identified 595 up-regulated (22 tags in panicles, 228 in leaves, and 345 in roots) and 25 down-regulated (seven tags in panicles, 15 in leaves, and three in roots) in LYP9. Most of the tag-identified and up-regulated genes were found related to enhancing carbon-and nitrogen-assimilation, including photosynthesis in leaves, nitrogen uptake in roots, and rapid growth in both roots and panicles. Among the downregulated genes in LYP9, there is an essential enzyme in photorespiration, alanine:glyoxylate aminotransferase 1. Our study adds a new set of data crucial for the understanding of molecular mechanisms of heterosis and gene regulation networks of the cultivated rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.