Along with the fourth industrial revolution, research in the biomedical engineering field is being actively conducted. Among these research fields, the brain–computer interface (BCI) research, which studies the direct interaction between the brain and external devices, is in the spotlight. However, in the case of electroencephalograph (EEG) data measured through BCI, there are a huge number of features, which can lead to many difficulties in analysis because of complex relationships between features. For this reason, research on BCIs using EEG data is often insufficient. Therefore, in this study, we develop the methodology for selecting features for a specific type of BCI that predicts whether a person correctly detects facial expression changes or not by classifying EEG-based features. We also investigate whether specific EEG features affect expression change detection. Various feature selection methods were used to check the influence of each feature on expression change detection, and the best combination was selected using several machine learning classification techniques. As a best result of the classification accuracy, 71% of accuracy was obtained with XGBoost using 52 features. EEG topography was confirmed using the selected major features, showing that the detection of changes in facial expression largely engages brain activity in the frontal regions.
Cryptocurrencies are highly volatile investment assets and are difficult to predict. In this study, various cryptocurrency data are used as features to predict the log-return price of major cryptocurrencies. The original contribution of this study is the selection of the most influential major features for each cryptocurrency using the volatility features of cryptocurrency, derived from the autoregressive conditional heteroskedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity (GARCH) models, along with the closing price of the cryptocurrency. In addition, we sought to predict the log-return price of cryptocurrencies by implementing various types of time-series model. Based on the selected major features, the log-return price of cryptocurrency was predicted through the autoregressive integrated moving average (ARIMA) time-series prediction model and the artificial neural network-based time-series prediction model. As a result of log-return price prediction, the neural-network-based time-series prediction models showed superior predictive power compared to the traditional time-series prediction model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.