Microenvironment responsive nanomaterials are attractive for therapeutic applications with regional specificity. Here we report pH responsive gold nanoparticles which are designed to aggregate in acidic condition similar to cancer environment and returned to its original disassembled states in a physiological pH. The pH responsive behavior of the particles is derived by change of electrostatic interaction among the particles where attraction and repulsion play a major role in low and high pH of the environment, respectively. Since different electrostatic interaction behavior of the particles in varied pH is induced not by irreversible chemical change but by simple protonation differences, the pH responsive process of assembly and disassembly is totally reversible. The low pH specific aggregation of gold nanoparticles resulted in red shift of plasmonic absorption peak and showed higher photothermal efficacy in acidic pH than in normal physiological pH. The low pH specific photothermal effect with long wave laser irradiation was directly applied to cancer specific photothermal therapy and resulted higher therapeutic effect for melanoma cancer cells than non-pH responsive gold nanoparticles.
Stimuli-responsive nanoparticles are favorable for improving the selective delivery and rational vocation that easily avoids the undesirable barriers or side effects, leading to a further improved therapeutic efficiency. Furthermore, multifunctional nanomaterials have been extensively developed as attractive candidates for theranostic reagents for cancer treatment. In this article, we developed reversibly pH-responsive gold nanoparticles (AuNPs) with an enhanced Raman scattering signal as well as an efficient photothermal effect and demonstrated their applications as a theranostic reagent for cancer treatment. Surfaces of these AuNPs were modified with mixed layers of Cy3-modified single-stranded DNA (ssDNA-Cy3) for Raman probing and a negative charge supply and cytochrome C (Cyt C) for pH-responsive charge inversion. This combination of pH-responsive ligands and Raman probes played an important role in inducing the assembly or disassembly of AuNPs corresponding to the neighboring pH, accompanied by an additional highly distinguished Raman signal intensity. An operative reversible response of the AuNPs to pH is endowed with the characteristic behavior of AuNPs with the cancerous cell’s acidic microenvironment of low pH. The responsive aggregation of AuNPs in a lower pH medium provides highly amplified signals attributed to well-formed hot spots between the particle surfaces that deliver better Raman scattering signals. The acidic pH-responsive aggregation of the particles also provided efficient photothermal treatments using a long-wavelength laser light with the benefit of deeper penetration for cancer cells. In vitro experiments employing cancer cells and control normal cells well-demonstrated the specificity of the particles to cancer cells in terms of highly enhanced Raman imaging and therapeutic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.