Myeloid-derived suppressor cells (MDSCs) are well known regulators of regulatory T cells (Treg cells); however, the direct regulation of MDSCs by Treg cells has not been well characterized. We find that colitis caused by functional deficiency of Treg cells leads to altered expansion and reduced function of MDSCs. During differentiation of MDSCs in vitro from bone marrow cells, Treg cells enhanced MDSC function and controlled their differentiation through a mechanism involving transforming growth factor-β (TGF-β). TGF-β-deficient Treg cells were not able to regulate MDSC function in an experimentally induced model of colitis. Finally, we evaluated the therapeutic effect of TGF-β-mediated in-vitro-differentiated MDSCs on colitis. Adoptive transfer of MDSCs that differentiated with TGF-β led to better colitis prevention than the transfer of MDSCs that differentiated without TGF-β. Our results demonstrate an interaction between Treg cells and MDSCs that contributes to the regulation of MDSC proliferation and the acquisition of immunosuppressive functions.
Hand gestures are an important type of natural language used in many research areas such as human-computer interaction and computer vision. Hand gestures recognition requires the prior determination of the hand position through detection and tracking. One of the most efficient strategies for hand tracking is to use 2D visual information such as color and shape. However, visual-sensor-based hand tracking methods are very sensitive when tracking is performed under variable light conditions. Also, as hand movements are made in 3D space, the recognition performance of hand gestures using 2D information is inherently limited. In this article, we propose a novel real-time 3D hand tracking method in depth space using a 3D depth sensor and employing Kalman filter. We detect hand candidates using motion clusters and predefined wave motion, and track hand locations using Kalman filter. To verify the effectiveness of the proposed method, we compare the performance of the proposed method with the visual-based method. Experimental results show that the performance of the proposed method out performs visual-based method.
The role of cereblon (CRBN) in T cells is not well understood. We generated mice with a deletion in Crbn and found cereblon to be an important antagonist of T-cell activation. In mice lacking CRBN, CD4+ T cells show increased activation and IL-2 production on T-cell receptor stimulation, ultimately resulting in increased potassium flux and calcium-mediated signaling. CRBN restricts T-cell activation via epigenetic modification of Kcna3, which encodes the Kv1.3 potassium channel required for robust calcium influx in T cells. CRBN binds directly to conserved DNA elements adjacent to Kcna3 via a previously uncharacterized DNA-binding motif. Consequently, in the absence of CRBN, the expression of Kv1.3 is derepressed, resulting in increased Kv1.3 expression, potassium flux, and CD4+ T-cell hyperactivation. In addition, experimental autoimmune encephalomyelitis in T-cell–specific Crbn-deficient mice was exacerbated by increased T-cell activation via Kv1.3. Thus, CRBN limits CD4+ T-cell activation via epigenetic regulation of Kv1.3 expression.
BackgroundWe recently demonstrated that BATF, a member of the activator protein-1 (AP-1) family, regulates osteoarthritic cartilage destruction. Here, we explored the roles and regulatory mechanisms of BATF in collagen-induced arthritis (CIA) in mice.MethodsCIA and K/BxN serum transfer were used to generate inflammatory arthritis models in wild-type (WT) and Batf−/− mice. RA manifestations were determined by examining CIA incidence, clinical score, synovitis, synovial hyperplasia, angiogenesis in inflamed synovium, pannus formation, bone erosion, and cartilage destruction. Immune features in RA were analyzed by examining immune cell populations and cytokine production.ResultsBATF was upregulated in the synovial tissues of joints in which inflammatory arthritis had been caused by CIA or K/BxN serum transfer. The increases in CIA incidence, clinical score, and autoantibody production in CIA-induced WT mice were completely abrogated in the corresponding Batf−/− DBA/1 J mice. Genetic ablation of Batf also inhibited CIA-induced synovitis, synovial hyperplasia, angiogenesis in synovial tissues, pannus formation, bone erosion, and cartilage destruction. Batf knockout inhibited the differentiation of T helper (Th)17 cells and the conversion of CD4+Foxp3+ cells to CD4+IL-17+ cells. However, BATF did not modulate the functions of fibroblast-like synoviocytes (FLS), including the expressions of chemokines, matrix-degrading enzymes, vascular endothelial growth factor, and receptor activator of NF-κB ligand (RANKL).ConclusionOur findings indicate that BATF crucially mediates CIA by regulating Th cell differentiation without directly affecting the functions of FLS.
CD28/T cell receptor ligation activates the NF-κB signaling cascade during CD4 T cell activation. NF-κB activation is required for cytokine gene expression and activated T cell survival and proliferation. Recently, many reports showed that NF-κB activation is also involved in T helper (Th) cell differentiation including Th17 cell differentiation. In this review, we discuss the current literature on NF-κB activation pathway and its effect on Th17 cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.