SARS-CoV-2 causes a wide spectrum of clinical manifestations and significant mortality. Studies investigating underlying immune characteristics are needed to understand disease pathogenesis and inform vaccine design. In this study, we examined immune cell subsets in hospitalized and non-hospitalized individuals. In hospitalized patients, many adaptive and innate immune cells were decreased in frequency compared to healthy and convalescent individuals, with the exception of B lymphocytes which increased. Our findings show increased frequencies of T-cell activation markers (CD69, OX40, HLA-DR and CD154) in hospitalized patients, with other T-cell activation/exhaustion markers (PD-L1 and TIGIT) remaining elevated in hospitalized and nonhospitalized individuals. B cells had a similar pattern of activation/exhaustion, with increased frequency of CD69 and CD95 during hospitalization, followed by an increase in PD1 frequencies in non-hospitalized individuals. Interestingly, many of these changes were found to increase over time in non-hospitalized longitudinal samples, suggesting a prolonged period of immune dysregulation following SARS-CoV-2 infection. Changes in T-cell activation/exhaustion in nonhospitalized patients were found to positively correlate with age. Severely infected individuals had increased expression of activation and exhaustion markers. These data suggest a prolonged period of immune dysregulation following SARS-CoV-2 infection highlighting the need for additional studies investigating immune dysregulation in convalescent individuals.
SARS-CoV-2 infection results in viral burden in the respiratory tract, enabling transmission and leading to substantial lung pathology. The 1212C2 fully human monoclonal antibody was derived from an IgM memory B cell of a COVID-19 patient, has high affinity for the Spike protein Receptor Binding Domain, neutralizes SARS-CoV-2 and exhibits in vivo prophylactic and therapeutic activity in hamsters when delivered intraperitoneally, reducing upper and lower respiratory viral burden and lung pathology. Inhalation of nebulized 1212C2 at levels as low as 0.6mg/kg, corresponding to 0.03mg/kg of lung deposited dose, reduced viral burden below the detection limit, and mitigated lung pathology. The therapeutic efficacy of an exceedingly low-dose of inhaled 1212C2 supports the rationale for local lung delivery for dose-sparing benefits as compared to the conventional parenteral route of administration. These results suggest clinical development of 1212C2 formulated and delivered via inhalation for the treatment of SARS-CoV-2 infection should be considered.
A subset of COVID-19 patients exhibit Post-Acute Sequalae of COVID-19 (PASC), but little is known about the immune signatures associated with these syndromes. We investigated longitudinal peripheral blood samples in 50 individuals with previously confirmed SARS-CoV-2 infection, including 20 who experienced prolonged duration of COVID-19 symptoms (lasting more than 30 days; median=74 days) compared to 30 who had symptom resolution in 20 days or less.Individuals with prolonged symptom duration maintained antigen-specific T-cell response magnitudes to SARS-CoV-2 spike protein in CD4+ and cTfh populations during late convalescence while those without persistent symptoms demonstrated an expected decline. The prolonged group also displayed increased IgG avidity to SARS-CoV-2 S-protein. Significant correlations between symptom duration and both SARS-CoV-2-specific T cells and antibodies were observed.Activation and exhaustion markers were evaluated in multiple immune cell types, revealing few phenotypic differences between prolonged and recovered groups suggesting that prolonged symptom duration is not due to persistent systemic inflammation. These findings demonstrate that SARS-CoV-2-specific immune responses are maintained in patients suffering from prolonged post-COVID-19 symptom duration in contrast to those with resolved symptoms and may suggest the persistence of viral antigens as an underlying etiology.
SARS-CoV-2 infection results in viral burden in the upper and lower respiratory tract, enabling transmission and often leading to substantial lung pathology. Delivering the antiviral treatment directly to the lungs has the potential to improve lung bioavailability and dosing efficiency. As the SARS-CoV-2 Receptor Binding Domain (RBD) of the Spike (S) is increasingly deemed to be a clinically validated target, RBD-specific B cells were isolated from patients following SARS-CoV-2 infection to derive a panel of fully human monoclonal antibodies (hmAbs) that potently neutralize SARS-CoV-2. The most potent hmAb, 1212C2 was derived from an IgM memory B cell, has high affinity for SARS-CoV-2 RBD which enables its direct inhibition of RBD binding to ACE2. The 1212C2 hmAb exhibits in vivo prophylactic and therapeutic activity against SARS-CoV-2 in hamsters when delivered intraperitoneally, achieving a meaningful reduction in upper and lower respiratory viral burden and lung pathology. Furthermore, liquid nebulized inhale treatment of SARS-CoV-2 infected hamsters with as low as 0.6 mg/kg of inhaled dose, corresponding to approximately 0.03 mg/kg of lung deposited dose, mediated a reduction in respiratory viral burden that is below the detection limit, and mitigated lung pathology. The therapeutic efficacy achieved at an exceedingly low-dose of inhaled 1212C2 supports the rationale for local lung delivery and achieving dose-sparing benefits as compared to the conventional parenteral route of administration. Taken together, these results warrant an accelerated clinical development of 1212C2 hmAb formulated and delivered via inhalation for the prevention and treatment of SARS-CoV-2 infection.
SARS-CoV-2 causes a wide spectrum of clinical manifestations and significant mortality. Studies investigating underlying immune characteristics are needed to understand disease pathogenesis and inform vaccine design. In this study, we examined immune cell subsets in hospitalized and non-hospitalized individuals. In hospitalized patients, many adaptive and innate immune cells were decreased in frequency compared to healthy and convalescent individuals, with the exception of B lymphocytes which increased. Our findings show increased frequencies of T-cell activation markers (CD69, Ox40, HLA-DR and CD154) in hospitalized patients, with other T-cell activation/exhaustion markers (CD25, PD-L1 and TIGIT) remaining elevated in hospitalized and non-hospitalized individuals. B cells had a similar pattern of activation/exhaustion, with increased frequency of CD69 and CD95 during hospitalization, followed by an increase in PD1 frequencies in non-hospitalized individuals. Interestingly, many of these changes were found to increase over time in non-hospitalized longitudinal samples, suggesting a prolonged period of immune dysregulation following SARS-CoV-2 infection. Changes in T-cell activation/exhaustion in non-hospitalized patients were found to positively correlate with age. Severely infected individuals had increased expression of activation and exhaustion markers. These data suggest a prolonged period of immune dysregulation following SARS-CoV-2 infection highlighting the need for additional studies investigating immune dysregulation in convalescent individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.