The baseflow separation method based on a digital filter is a simple method for separating the baseflow from streamflow. Appropriate estimation of filter parameters is required to use the digital filter method for analysis. We carried out sensitivity analysis on four digital filter methods: Lyne–Hollick (LH), Chapman, Chapman and Maxwell (CM), and exponentially weighted moving average (EWMA). Furthermore, appropriate filter parameters were suggested for each method in this study. By applying them to 25 stage stations in the Nakdong River in the Republic of Korea, the four methods were evaluated. The results of the evaluation showed that the Chapman and CM methods had problems separating the baseflow during the dry seasons. The EWMA and LH methods were able to achieve reliable baseflow separation of the outcomes by selecting appropriate the filter parameters. Thus, the EWMA and LH methods can be used easily and reasonably among the digital filter methods that have one filter parameter.
Especially for periods of drought, the higher the accuracy of reservoir inflow forecasting is, the more reliable the water supply from a dam is. This article focuses on the probabilistic forecasting of quarterly inflow to reservoirs, which determines estimates from the probabilistic quarterly inflow according to drought forecast results. The probabilistic quarterly inflow was forecasted by a copula-based Bayesian network employing a Gaussian copula function. Drought forecasting was performed by calculation of the standardized inflow index value. The calendar year is divided into four quarters, and the total inflow volume of water to a reservoir for three months is referred to as the quarterly inflow. Quarterly inflow forecasting curves, conforming to drought stages, produce estimates of probabilistic quarterly inflow according to the drought forecast results. The forecasted estimates of quarterly inflow were calculated by using the inflow records of Soyanggang and Andong dams in the Republic of Korea. After the probability distribution of the quarterly inflow was determined, a lognormal distribution was found to be the best fit to the quarterly inflow volumes in the case of the Andong dam, except for those of the third quarter. Under the threshold probability of drought occurrences ranging from 50% to 55%, the forecasted quarterly inflows reasonably matched the corresponding drought records. Provided the drought forecasting is accurate, combining drought forecasting with quarterly inflow forecasting can produce reasonable estimates of drought inflow based on the probabilistic forecasting of quarterly inflow to a reservoir.
Water risk has been continuously rising due to climate change and ownership disputes of water resources. Dam construction to secure water resources may lead to environmental problems and upstream immersion. On the other hand, rainwater harvesting systems can effectively supply water at a low cost, although economic efficiency of these systems is still debatable. This study evaluates financial support programs to promote installation of rainwater harvesting systems, increasing economic feasibility. Based on a cost–benefit analysis, capacity optimization methods are further suggested. A sensitivity analysis is performed to determine the relative importance among uncertain parameters such as inflation and discount rates. In doing so, priority factors to consider in the design of rainwater harvesting systems are ultimately identified. A net present value, although it is sensitive to the inflation rate, is shown to be more appropriate to estimate the economic efficiency of rainwater harvesting system, compared to the typical cost–benefit ratio. Because the high future value overestimates the economic feasibility of rainwater harvesting systems, proper inflation rates should be applied. All in all, a funding program to promote rainwater harvesting systems significantly increases the benefits. Thus, national financial support policies are recommended to ensure economic feasibility of rainwater harvesting systems.
Rainfall, tide, and wave overtopping can together cause inundation in some coastal areas. However, there have been few cases of inundation analysis considering compound flooding due to the difficulty of the interdisciplinary technique. The purpose of this study is to suggest an analysis technique of compound flooding in coastal areas that links flow simulation tools of coasts and watershed. XP-SWMM was used to analyze rainfall–runoff simulation and 2D surface inundation analysis. A coupled model of ADCIRC and SWAN (ADCSWAN) was used for analyzing expected flow, including wave spectrum, tide, and storm surge from the distant ocean, and the FLOW-3D model was used to estimate the flow and wave overtopping in the coastal area. The analysis technique was applied to Marine City located in Busan, the Republic of Korea, where rainfall and wave overtopping occurred simultaneously during typhoons, and the results were reasonable. The study results are meaningful as they can contribute to the improvement of reproducibility of real phenomena of compound flooding in coastal areas through linked application of flow simulation tools of coasts and watershed.
The water cycle in watersheds is vulnerable due to climate change; hence, the need for sustainable watershed management is increasing. This paper suggests a framework for a healthiness assessment of the water cycle to provide a guideline for systematic watershed management considering the previous and current states. The suggested framework aims to prioritize restoration and enhancement plans based on the graded healthiness of the water cycle elements by the watersheds. The framework is composed of two assessment procedures: a problem-focused assessment to identify problems such as flood, drought, and river depletion in the watershed and the highest priority assessment to select the watershed for enhancement and restoration plans. The healthiness assessment method for each metric is suggested based on the Korean Framework Act on Water Management. The framework was applied to four different watersheds in South Korea. The framework is proven to be an effective method to identify practical emerging problems for the water cycle in each watershed. The framework can contribute to providing technical information to detect the water problem of the watershed by objectively diagnosing the watersheds with various potential water problems via the healthiness assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.