This paper discusses two important issues of corpus‐based synthesis: synthesis unit generation based on phrase break strength information and pruning redundant synthesis unit instances. First, the new sentence set for recording was designed to make an efficient synthesis database, reflecting the characteristics of the Korean language. To obtain prosodic context sensitive units, we graded major prosodic phrases into 5 distinctive levels according to pause length and then discriminated intra‐word triphones using the levels. Using the synthesis unit with phrase break strength information, synthetic speech was generated and evaluated subjectively. Second, a new pruning method based on weighted vector quantization (WVQ) was proposed to eliminate redundant synthesis unit instances from the synthesis database. WVQ takes the relative importance of each instance into account when clustering similar instances using vector quantization (VQ) technique. The proposed method was compared with two conventional pruning methods through objective and subjective evaluations of synthetic speech quality: one to simply limit the maximum number of instances, and the other based on normal VQ‐based clustering. For the same reduction rate of instance number, the proposed method showed the best performance. The synthetic speech with reduction rate 45% had almost no perceptible degradation as compared to the synthetic speech without instance reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.