Ibuprofen is well known as one of the most frequently detected pharmaceuticals and personal care products (PPCPs) in rivers. However, sorption of ibuprofen onto sediment has not been considered in spite of its high K
ow (3.5). In this study, the effects of various environmental conditions such as pH (4, 5.3, and 7), the concentrations of dissolved organic matters (0 to 1.0 mM citrate and urea), salinity (0, 10, 20, and 30 part per thousand), and presence of other PPCP (salicylic acid) on ibuprofen sorption were investigated. Linear model mainly fitted the experimental data for analysis. The distribution coefficient (K
d) in the linear model decreased from 6.76 at pH 4 to near zero at pH 7, indicating that neutral form of ibuprofen at pH below pKa (5.2) was easily sorbed onto the sediment whereas the sorption of anionic form at pH over pKa was not favorable. To investigate the effect of dissolved organic matters (DOMs) on ibuprofen sorption, citrate and urea were used as DOMs. As citrate concentration increased, the K
d value decreased but urea did not interrupt the ibuprofen sorption. Citrate has three carboxyl functional groups which can attach easily ibuprofen and hinder its sorption onto sediment. Salinity also affected ibuprofen sorption due to decrease of the solubility of ibuprofen as salinity increased. In competitive sorption experiment, the addition of salicylic acid also led to enhance ibuprofen sorption. Conclusively, ibuprofen can be more easily sorbed onto the acidified sediments of river downstream, especially estuaries or near-shore environment with low DOM concentration.
A three-stage pilot-scale moving-bed biofilm reactor (MBBRs, anaerobic-anaerobic-aerobic in series) was investigated to treat textile dyeing wastewater. Each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment. To determine the optimum operating conditions of MBBRs, the effect of PU-AC carrier, its packing percentage (v/v%) and pH control on COD removal were analyzed by batch experiments. The MBBRs were inoculated with activated sludge obtained from a local dyeing wastewater treatment plant. The MBBR process removed 86% of COD and 50% of color (influent COD=608 mg/L and color=553 PtCo unit) using relatively low MLSS concentration (average 3,000 mg/L in biomass attached to PU-AC carrier) and hydraulic retention time (HRT=44 hr). The MBBR process showed a promising potential for dyeing wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.