A virulent strain of pigeon pea wilt pathogen was isolated from wilted pigeon pea plants and was identified as Fusarium oxysporum f. sp. udum. Many bacterial cultures showing antagonism to the pathogen were isolated from various ecological niches. When tested under pot and field conditions, development of fusarial wilt symptoms was prevented in pigeon pea seeds treated with one such antagonist, Bacillus brevis. A formulation of B. brevis with vermiculite as a carrier had a shelf life of at least 6 months. Bacillus brevis produced an extracellular antagonistic substance which induced swelling of the pathogen's hyphal tips, and cells were bulbous and swollen with shrunken and granulated cytoplasm. The antagonistic substance also inhibited germination of conidia, and was fungicidal to the vegetative mycelia of the pathogen. Comparison of the properties of our antagonistic substance with that of known antibiotics produced by B. brevis suggests that our antagonistic substance is a novel compound. The observations reported here indicate that this strain of B. brevis may have potential as a biocontrol agent against fusarial wilt in pigeon pea.
A virulent strain of pigeon pea wilt pathogen was isolated from wilted pigeon pea plants and was identified as Fusarium oxysporum f. sp. udum. Many bacterial cultures showing antagonism to the pathogen were isolated from various ecological niches. When tested under pot and field conditions, development of fusarial wilt symptoms was prevented in pigeon pea seeds treated with one such antagonist, Bacillus brevis. A formulation of B. brevis with vermiculite as a carrier had a shelf life of at least 6 months. Bacillus brevis produced an extracellular antagonistic substance which induced swelling of the pathogen's hyphal tips, and cells were bulbous and swollen with shrunken and granulated cytoplasm. The antagonistic substance also inhibited germination of conidia, and was fungicidal to the vegetative mycelia of the pathogen. Comparison of the properties of our antagonistic substance with that of known antibiotics produced by B. brevis suggests that our antagonistic substance is a novel compound. The observations reported here indicate that this strain of B. brevis may have potential as a biocontrol agent against fusarial wilt in pigeon pea.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.