Plant essential oils are complex mixtures of volatile organic compounds, which play indispensable roles in the environment, for the plant itself, as well as for humans. The potential biological information stored in essential oil composition data can provide an insight into the silent language of plants, and the roles of these chemical emissions in defense, communication and pollinator attraction. In order to decipher volatile profile patterns from a global perspective, we have developed the ESSential OIL DataBase (EssOilDB), a continually updated, freely available electronic database designed to provide knowledge resource for plant essential oils, that enables one to address a multitude of queries on volatile profiles of native, invasive, normal or stressed plants, across taxonomic clades, geographical locations and several other biotic and abiotic influences. To our knowledge, EssOilDB is the only database in the public domain providing an opportunity for context based scientific research on volatile patterns in plants. EssOilDB presently contains 123 041 essential oil records spanning a century of published reports on volatile profiles, with data from 92 plant taxonomic families, spread across diverse geographical locations all over the globe. We hope that this huge repository of VOCs will facilitate unraveling of the true significance of volatiles in plants, along with creating potential avenues for industrial applications of essential oils. We also illustrate the use of this database in terpene biology and show how EssOilDB can be used to complement data from computational genomics to gain insights into the diversity and variability of terpenoids in the plant kingdom. EssOilDB would serve as a valuable information resource, for students and researchers in plant biology, in the design and discovery of new odor profiles, as well as for entrepreneurs—the potential for generating consumer specific scents being one of the most attractive and interesting topics in the cosmetic industry.Database URL: http://nipgr.res.in/Essoildb/
Plant essential oils are complex mixtures of volatile organic compounds, which play indispensable roles in communication, defense, and adaptive evolution. The complete chemical library produced by a plant is referred to as its terpenome. The potential biological information stored in essential oil composition data can provide an insight into the silent language of plants, as well as roles of terpene emissions in direct and indirect defense, and for playing a crucial role in adaptive evolution. In this work, we have attempted to measure the plant terpenome from a global perspective. One way of measuring the terpenome is to observe and record actual emissions in natural conditions, and this has been in practice for over a century through variously evolving methods of comprehensive GC-MS and HPLC. An alternative method is a knowledge-based prediction of the terpenome, and this method has gained popularity in recent years, with the advent of large-scale genome sequencing technologies. Over the past decade, our laboratory has been involved in compilation and investigation of the plant terpenome using both these methods and this has offered us the opportunity to compare and contrast data from actual and potential emissions, in order to better understand the terpenome and its roles in primary, secondary and adaptive metabolism. We have used emission data in conjunction with genomic data in order to understand how a plant creates the so-called final terpenome, specific to itself, and whether or not plants tap the complete potential for terpene biosynthesis at their disposal according to their genomes. For measuring actual emissions, we have used EssOilDB (the ESSential OIL DataBase), the largest contextual web resource for phytochemicals and for measuring the total plant potential for emissions, we have used TERZYME, an automated algorithm for identification and analysis of genes and proteins involved in isoprenoid biosynthesis. Arabidopsis thaliana 29 36 Citrus sinensis 53 88 Eucalyptus grandis 34 111 Ricinus communis 5 59 Populus trichocarpa 22 67 Phaseolus vulgaris 3 49 Vitis vinifera 33 118 Glycine max 4 45 Fragaria vesca 41 60 Malus domestica 20 118 Oryza sativa 8 43 Citrus clementina 33 21 Medicago truncatula 12 52 Capsella rubella 18 42 Prunus persica 8 27 Cucumus sativus 4 32 Carica papaya 18 41 Gossypium raimondii 16 76 Cicer arietinum 16 19
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.