The allyl moiety of the immunosuppressive agent FK506 is structurally unique amongst polyketides and critical for its potent biological activity. Here, we detail the biosynthetic pathway to allylmalonyl-coenzyme A (CoA), from which the FK506 allyl group is derived, based on a comprehensive chemical, biochemical and genetic interrogation of three FK506 gene clusters. A discrete polyketide synthase (PKS) with noncanonical domain architecture presumably in coordination with the fatty acid synthase pathway of the host catalyzes a multi-step enzymatic reaction to allylmalonyl-CoA via trans-2-pentenyl-acyl carrier protein. Characterization of this discrete pathway facilitated the engineered biosynthesis of novel allyl group-modified FK506 analogs, namely 36-fluoro-FK520 and 36-methyl-FK506, the latter of which exhibits improved * slim@genotech.co.kr .* joonyoon@ewha.ac.kr . 8 These authors contributed equally to this work.
FK506 is a 23-membered polyketide macrolide with immunosuppressant activity produced by Streptomyces species. The production of FK506 in S. clavuligerus CKD1119 (KCTC 10561BP) was improved by enhancing the supply of biosynthetic precursors. This improvement was approximately 2.5-fold (15 mg/l) with the supplementation of 10 mM methyl oleate, which is the probable source of acyl-CoAs, to R2YE medium. When the level of FK506 production reached its maximum, the intracellular concentration of methylmalonyl-CoA in S. clavuligerus CKD1119 supplemented with methyl oleate was 12.5-fold higher than that of the unsupplemented strain, suggesting that an increased methylmalonyl-CoA level caused the high-level production of FK506. The following three pathways for the production of (2S)-methylmalonyl-CoA were evaluated to identify the effective precursor supply pathway that can support the high production of FK506 in S. clavuligerus CKD1119: propionyl-CoA carboxylase, methylmalonyl-CoA mutase (MCM), and malonyl/methylmalonyl-CoA ligase. Of the three pathways examined, the MCM pathway supported the highest levels of FK506 production. The expression of MCM in S. clavuligerus CKD1119 led to a threefold and 1.5-fold increase in the methylmalonyl-CoA pool and FK506 production, respectively. Supplementing the culture broth of S. clavuligerus CKD1119 expressing MCM with methyl oleate resulted in an additional twofold increase in the FK506 titer (17.8 mg/l). Overall, these results show that the methylmalonyl-CoA supply is a limiting factor for FK506 biosynthesis and that among the three pathways analyzed, the MCM pathway is the most effective precursor supply pathway supporting the highest titer of FK506 in S. clavuligerus CKD1119.
The enzyme RedP is thought to initiate the biosynthesis of the undecylpyrolle component of the antibiotic undecylprodiginine produced by Streptomyces coelicolor. RedP has homology to FabH, which initiates fatty acid biosynthesis by condensing the appropriate acyl-CoA starter unit with malonyl ACP. We have generated a redP-deletion mutant of S. coelicolor M511 (SJM1) and shown that it produces reduced levels of prodiginines and two new analogs, methylundecylprodiginine and methyldodecylprodiginine. Incorporation studies with perdeuterated valine were consistent with these being generated using methylbutyryl-CoA and isobutyryl-CoA as starter units, respectively. Plasmid-based expression of a streptomycete fabH in the SJM1 mutant led to restoration of overall prodiginine titers but the same overall ratio of undecylprodiginines and novel prodiginines. Thus, the redP FabH can be replaced by FabH enzymes with different substrate specificities and provides a method for generating novel prodiginines.
FK506 production by a mutant strain (Streptomyces sp. RM7011) induced by N-methyl-N'-nitro-N-nitrosoguanidine and ultraviolet mutagenesis was improved by 11.63-fold (94.24 mg/l) compared to that of the wild-type strain. Among three different metabolic pathways involved in the biosynthesis of methylmalonyl-CoA, only expression of propionyl-CoA carboxylase (PCC) pathway led to a 1.75-fold and 2.5-fold increase in FK506 production and the methylmalonyl-CoA pool, respectively, compared to those of the RM7011 strain. Lipase activity of the high FK506 producer mutant increased in direct proportion to the increase in FK506 yield, from low detection level up to 43.1 U/ml (12.6-fold). The level of specific FK506 production and lipase activity was improved by enhancing the supply of lipase inducers. This improvement was approximately 1.88-fold (71.5 mg/g) with the supplementation of 5 mM Tween 80, which is the probable effective stimulator in lipase production, to the R2YE medium. When 5 mM vinyl propionate was added as a precursor for PCC pathway to R2YE medium, the specific production of FK506 increased approximately 1.9-fold (71.61 mg/g) compared to that under the non-supplemented condition. Moreover, in the presence of 5 mM Tween 80, the specific FK506 production was approximately 2.2-fold (157.44 mg/g) higher than that when only vinyl propionate was added to the R2YE medium. In particular, PCC expression in Streptomyces sp. RM7011 (RM7011/pSJ1003) together with vinyl propionate feeding resulted in an increase in the FK506 titer to as much as 1.6-fold (251.9 mg/g) compared with that in RM7011/pSE34 in R2YE medium with 5 mM Tween 80 supplementation, indicating that the vinyl propionate is more catabolized to propionate by stimulated lipase activity on Tween 80, that propionyl-CoA yielded from propionate generates methylmalonyl-CoA, and that the PCC pathway plays a key role in increasing the methylmalonyl-CoA pool for FK506 biosynthesis in RM7011 strain. Overall, these results show that a combined approach involving classical random mutation and metabolic engineering can be applied to supply the limiting factor for FK506 biosynthesis, and vinyl propionate could be successfully used as a precursor of important methylmalonyl-CoA building blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.