To reduce carbon emissions during heating in the manufacturing processes, microwave technology has attracted significant attention. Microwaves have considerable advantages over traditional heating methods, including more rapid heating, lower thermal damage, and eco-friendly processes. To apply microwaves to the manufacturing process, uniform and efficient heating is required. We analyzed the effect of various design parameters for uniform and efficient heating by changing the cavity heights, application of the reflector, and number and positions of waveguides. We conducted a numerical simulation and verified the findings by experiments. The results showed that a slight change in the cavity height altered the electromagnetic field distribution and heating parameters, such as the coefficient of variance and power absorption efficiency. With reflectors installed, 66% of cases exhibited better comprehensive evaluation coefficient (CEC) with consideration of uniform heating and power absorption. The spherical reflector showed 81% of cases, better than those of the ordinary model without a reflector. Furthermore, when double waveguides were installed, the average coefficient of variance (COV) was improved by 22%, and power absorption efficiency was increased by 53% compared to the single waveguide case. When the power applied to the waveguides was doubled, the average COV values improved by 18%. This large-scale analysis will be helpful in applying microwaves to actual industrial sites.
To reduce the carbon emissions during heating in the manufacturing process, microwaves have attracted significant attention. Microwave has a lot of advantages rather than traditional heating method such as rapid heating, lower thermal damage and eco-friendly process. In order to apply microwaves to manufacturing process, uniform and efficient heating is required. We have analyzed the effect of various design parameters such as cavity heights, the application of the reflector, and the number and positions of waveguides for uniform and efficient heating by numerical simulation and verified that by experiment. The results showed that a slight change in the cavity height altered the electromagnetic field distribution and heating parameters, such as the coefficient of variance and power absorption efficiency. With reflectors installed, uniform heating was achieved and power absorption was improved, with the spherical reflector showing the maximum efficiency. The use of double waveguides heated the target material in a uniform manner. An increase in the power supply also led to uniform heating. This large-scale analysis will be helpful in applying microwaves to actual industrial sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.