A gallium-based liquid metal got high attention recently, due to the excellent material properties that are useful in various research areas. We report here on electric field-induced liquid metal droplet generation and falling direction manipulation. The well-analyzed electro-hydrodynamic method is a selectable way to control the liquid metal, as the liquid metal is conductive. The electric field-induced liquid metal manipulation can be affected by the flow rate (0.05~0.2 mL/min), voltage (0~7 kV), and distance (15 and 30 mm) between electrodes, which changes the volume of the electric field-induced generated liquid metal droplet and the number of the generated droplets. When the electric field intensity increases or the flow rate increases, the generated droplet volume decreases, and the number of droplets increases. With the highest voltage of 7 kV with 15 mm between electrodes at the 0.2 mL/min flow rate, the lowest volume and the largest number of the generated droplets for 10 s were ~10 nL and 541, respectively. Additionally, we controlled the direction of the generated droplet by changing the electric field. The direction of the liquid metal droplet was controlled with the maximum angle of ~12°. Moreover, we exhibited a short circuit demonstration by controlling the volume or falling direction of the generated liquid metal droplet with an applied electric field.
This paper presents a miniature robot designed for monitoring its surroundings and exploring small and complex environments by skating on the surface of water. The robot is mainly made of extruded polystyrene insulation (XPS) and Teflon tubes and is propelled by acoustic bubble-induced microstreaming flows generated by gaseous bubbles trapped in the Teflon tubes. The robot’s linear motion, velocity, and rotational motion are tested and measured at different frequencies and voltages. The results show that the propulsion velocity is proportional to the applied voltage but highly depends on the applied frequency. The maximum velocity occurs between the resonant frequencies for two bubbles trapped in Teflon tubes of different lengths. The robot’s maneuvering capability is demonstrated by selective bubble excitation based on the concept of different resonant frequencies for bubbles of different volumes. The proposed water skating robot can perform linear propulsion, rotation, and 2D navigation on the water surface, making it suitable for exploring small and complex water environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.