The discrimination between earthquakes and explosions is a serious issue in seismic signal analysis. This paper proposes a seismic discrimination method using support vector machine (SVM), wherein the amplitudes of the P-wave and the S-wave of the seismic signals are selected as feature vectors. Furthermore, to improve the seismic discrimination performance using a heterodyne laser interferometer for seismic wave detection, the Hough transform is applied as a compensation method for the periodic nonlinearity error caused by the frequency-mixing in the laser interferometric seismometer. In the testing procedure, different kernel functions of SVM are used to discriminate between earthquakes and explosions. The outstanding performance of a laser interferometer and Hough transform method for precision seismic measurement and nonlinearity error compensation is confirmed through some experiments using a linear vibration stage. In addition, the effectiveness of the proposed discrimination method using a heterodyne laser interferometer is verified through a receiver operating characteristic curve and other performance indices obtained from practical experiments.
The discrimination between earthquakes and artificial explosions is a significant issue in seismic analysis to efficiently prevent and respond to seismic events. However, the discrimination of seismic events is challenging due to the low incidence rate. Moreover, the similarity between earthquakes and artificial explosions with a local magnitude derives a nonlinear data distribution. To improve the discrimination accuracy, this paper proposes machine-learning-based seismic discrimination methods—support vector machine, naive Bayes, and logistic regression. Furthermore, to overcome the nonlinear separation problem, the kernel functions and regularized logistic regression are applied to design seismic classifiers. To efficiently design the classifier, P- and S-wave amplitude ratios on the time domain and spectral ratios on the frequency domain, which is converted by fast Fourier transform and short-time Fourier transform are selected as feature vectors. Furthermore, an adaptive synthetic sampling algorithm is adopted to enhance the classifier performance against the seismic data imbalance issue caused by the non-equivalent number of occurrences. The comparisons among classifiers are evaluated by the binary classification performance analysis methods.
We propose a control method wherein the estimated angles converge to the desired value for quadrotor attitude stabilization and position tracking. To improve the performance of a quadrotor system, the unmeasured states of the quadrotor are estimated using a sliding mode observer (SMO). We set up a quadrotor dynamic model and augment the quadrotor dynamics by an SMO. We also derive the control inputs by sliding mode control (SMC) and calculate the desired angle of the quadrotor to reach the target position with the control inputs. For fast convergence speed and increased robustness of tracking performance, a nonlinear sliding surface is applied to SMC. The angle of the quadrotor converges to the desired value through the operation of SMC with a nonlinear sliding surface. The target tracking performance is improved by adaptively switching the deceleration curve of the sliding mode surface with a nonlinear curve. Using a tracking system based on a nonlinear surface sliding mode control (NSMC) and SMO, the quadrotor reaches the target position with a decreased settling time. The performance and effectiveness of the proposed system are proved through simulation results.
Among various localization methods, a localization method that uses a radio frequency signal-based wireless sensor network has been widely applied due to its robustness against noise factors and few limits on installation location. In this paper, we focus on an iterative localization scheme for a mobile with a limited number of time difference of arrival (TDOA) and angle of arrival (AOA) data measured from base stations. To acquire the optimal location of a mobile, we propose a recursive solution for localization using an iteratively reweighted-recursive least squares (IR-RLS) algorithm. The proposed IR-RLS scheme can obtain the optimal solution with a fast computational speed when additional TDOA and/or AOA data is measured from base stations. Moreover, while the number of measured TDOA/AOA data was limited, the proposed IR-RLS scheme could obtain the precise location of a mobile. The performance of the proposed IR-RLS method is confirmed through some simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.