Some pioneer WiFi signal based human activity recognition systems have been proposed. Their key limitation lies in the lack of a model that can quantitatively correlate CSI dynamics and human activities. In this paper, we propose CARM, a CSI based human Activity Recognition and Monitoring system. CARM has two theoretical underpinnings: a CSI-speed model, which quantifies the correlation between CSI value dynamics and human movement speeds, and a CSI-activity model, which quantifies the correlation between the movement speeds of different human body parts and a specific human activity. By these two models, we quantitatively build the correlation between CSI value dynamics and a specific human activity. CARM uses this correlation as the profiling mechanism and recognizes a given activity by matching it to the best-fit profile. We implemented CARM using commercial WiFi devices and evaluated it in several different environments. Our results show that CARM achieves an average accuracy of greater than 96%.
Sensor-based human activity recognition is a fundamental research problem in ubiquitous computing, which uses the rich sensing data from multimodal embedded sensors such as accelerometer and gyroscope to infer human activities. The existing activity recognition approaches either rely on domain knowledge or fail to address the spatial-temporal dependencies of the sensing signals. In this paper, we propose a novel attention-based multimodal neural network model called AttnSense for multimodal human activity recognition. AttnSense introduce the framework of combining attention mechanism with a convolutional neural network (CNN) and a Gated Recurrent Units (GRU) network to capture the dependencies of sensing signals in both spatial and temporal domains, which shows advantages in prioritized sensor selection and improves the comprehensibility. Extensive experiments based on three public datasets show that AttnSense achieves a competitive performance in activity recognition compared with several state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.