RNase III is a double-stranded RNA-specific endoribonuclease that processes and degrades numerous mRNA molecules in Escherichia coli. A previous genome-wide analysis of E. coli transcripts showed that steady-state levels of mltD mRNA, which encodes membrane-bound lytic murein transglycosylase D, was most affected by changes in cellular concentration of RNase III. Consistent with this observation, in vitro and in vivo analyses of mltD mRNA revealed RNase III cleavage sites in the coding region of mltD mRNA. Introduction of a nucleotide substitution at the identified RNase III cleavage sites inhibited RNase III cleavage activity on mltD mRNA, resulting in, consequently, approximately two-fold increase in the steady-state level of the mRNA. These findings reveal an RNase III-mediated regulatory pathway that modulates mltD expression in E. coli.
RraA is a recently discovered protein inhibitor of RNase E that catalyzes the initial step in the decay and processing of numerous RNAs in Escherichia coli. In the genome of Vibrio vulnificus, two open reading frames that potentially encode proteins homologous to E. coli, RraA-designated RraAV1 and RraAV2, have respectively 80.1% and 59.0% amino acid identity to RraA. The authors report that coexpression of RraAV1 protein in E. coli cells overproducing RNase E rescued these cells from growth arrest and restored their normal growth, whereas coexpression of RraAV2 protein further inhibited the growth of E. coli cells, whose growth was already impaired by overproduction of RNase E. Analyses of the steady-state level of various RNase E substrates indicated that the coexpression of RraAV1 more efficiently inhibited RNase E action than coexpression of RraA, and consequently resulted in the more increased abundance of each RNA species tested in vivo. The inhibitory effect by RraAV2 coexpression on RNase E was observed only in the case of trpA mRNA, indicating the possibility of RNA substrate-dependent inhibition of RraAV2 on RNase E. The findings suggest that these regulators of ribonuclease activity have both a conserved inhibitory function and a differential inhibitory activity on RNase E-like enzymes across the species.
Nickel-titanium (NiTi) endodontic rotary instruments are used extensively in root canal procedures by both general dentists and specialists. However, their vulnerability to fracture is the major reason for clinicians’ concern regarding their use. The objective of this study was to investigate the potential effects of spring machining of the file shaft on the fatigue and torsional resistances of NiTi rotary instruments. Three types of NiTi rotary systems with (S) and without (NS) spring machining were used in this study (n = 15 each): a spring file (SPR; #25/.06, SPR-S, SPR-NS), a ProTaper Next X2 (PTN; #25/variable taper, PTN-S, PTN-NS), and a ProTaper Gold F2 (PTG; #25/variable taper, PTG-S, PTG-NS). Spring machining was adjusted on the 6 mm of each file system’s shaft via a laser cutting process. The number of rotation cycles until fracture (i.e., cyclic fatigue resistance), ultimate torsional strength, the distortion angle, and the toughness of each subgroup were estimated with specially designed devices. The results were analyzed using a paired t-test at a significance level of 95%. NiTi rotary instruments with spring machining exhibited a higher cyclic fatigue resistance than instruments without spring machining. The groups with spring machining exhibited a higher toughness and larger distortion angle than the groups without it (p < 0.05). In conclusion, spring machining on the shank of NiTi instruments may provide a stress-bearing area and attenuate the torsional and cyclic fatigue of NiTi rotary instruments.
Bacterial ribonuclease III (RNase III) belongs to the RNase III enzyme family, which plays a pivotal role in controlling mRNA stability and RNA processing in both prokaryotes and eukaryotes. In the Vibrio vulnificus genome, one open reading frame encodes a protein homologous to E. coli RNase III, designated Vv-RNase III, which has 77.9 % amino acid identity to E. coli RNase III. Here, we report that Vv-RNase III has the same cleavage specificity as E. coli RNase III in vivo and in vitro. Expressing Vv-RNase III in E. coli cells deleted for the RNase III gene (rnc) restored normal rRNA processing and, consequently, growth rates of these cells comparable to wild-type cells. In vitro cleavage assays further showed that Vv-RNase III has the same cleavage activity and specificity as E. coli RNase III on RNase III-targeted sequences of corA and mltD mRNA. Our findings suggest that RNase III-like proteins have conserved cleavage specificity across bacterial species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.