The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators, to realize functional AFM detection that achieve high temporal resolution (< 10 ns) and picometer vertical displacement uncertainty, simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscale in photothermal induced resonance experiments. The intrinsic η of metal-organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8 %). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular-monolayer-thin samples. Our paradigm-shifting photonic readout for small probes breaks the common tradeoff between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.
Capillary condensation is the first-order vapor-to-liquid phase transition taking place in confined geometries. Such heterogeneous nucleation has been well described by thermodynamic laws such as the Kelvin equation, but the equation's applicability at the nanoscale is still unresolved. Here, we show that the Kelvin equation is valid down to approximately 0.5 nm radius of curvature when the curvature dependence of surface tension is taken into account. By the shear-mode atomic force microscopy, we have measured directly and accurately the critical tip-surface distance (d c) at which the water meniscus is capillary condensed in ambient condition; e.g., d c ≈ 1.2 nm at 10% relative humidity. In particular, we can determine the Tolman length, the unique characteristic of the curvature-dependent surface tension, as the single fitting parameter (δ ¼ 0.21 AE 0.05 nm). Our results that unify the validity of the Kelvin equation at molecular scale and the characterization of the curvature effect of surface tension may provide a better understanding of general nucleation phenomena in nature, including the role of nanometric aerosols in cloud formation.
We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.