An increase in variable renewable energy sources and soaring electricity demand at peak hours undermines the efficiency and reliability of the power supply. Conventional supply-side solutions, such as additional gas turbine plants and energy storage systems, can help mitigate these problems; however, they are not cost-effective. This study highlights the potential value of electric vehicle demand response programs by analyzing three separate scenarios: electric vehicle charging based on a time-of-use tariff, smart charging controlled by an aggregator through virtual power plant networks, and smart control with vehicle-to-grid capability. The three programs are analyzed based on the stochastic form of a power system optimization model under two hypothetical power system environments in Jeju Island, Korea: one with a low share of variable renewable energy in 2019 and the other with a high share in 2030. The results show that the cost saving realized by the electric vehicle demand response program is higher in 2030 and a smart control with vehicle-to-grid capability provides the largest cost saving. When the costs of implementing an electric vehicle demand response are considered, the difference in cost saving between the scenarios is reduced; however, the benefits are still large enough to attract customers to participate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.