This paper presents a comprehensive survey on anti-drone systems. After drones were released for non-military usages, drone incidents in the unarmed population are gradually increasing. However, it is unaffordable to construct a military grade anti-drone system for every private or public facility due to installation and operation costs, and regulatory restrictions. We focus on analyzing antidrone system that does not use military weapons, investigating a wide range of anti-drone technologies, and deriving proper system models for reliable drone defense. We categorized anti-drone technologies into detection, identification, and neutralization, and reviewed numerous studies on each. Then, we propose a hypothetical anti-drone system that presents the guidelines for adaptable and effective drone defense operations. Further, we discuss drone-side safety and security schemes that could nullify current anti-drone methods, and propose future solutions to resolve these challenges.
The recent development of unmanned aerial vehicle (UAV) technology has shown the possibility of using UAVs in many research and industrial fields. One of them is for UAVs moving in swarms to provide wireless networks in environments where there is no network infrastructure. Although this method has the advantage of being able to provide a network quickly and at a low cost, it may cause scalability problems in multi-hop connectivity and UAV control when trying to cover a large area. Therefore, as more UAVs are used to form drone networks, the problem of efficiently controlling the network topology must be solved. To solve this problem, we propose a topology control system for drone networks, which analyzes relative positions among UAVs within a swarm, then optimizes connectivity among them in perspective of both interference and energy consumption, and finally reshapes a logical structure of drone networks by choosing neighbors per UAV and mapping data flows over them. The most important function in the scheme is the connectivity optimization because it should be adaptively conducted according to the dynamically changing complex network conditions, which includes network characteristics such as user density and UAV characteristics such as power consumption. Since neither a simple mathematical framework nor a network simulation tool for optimization can be a solution, we need to resort to reinforcement learning, specifically DDPG, with which each UAV can adjust its connectivity to other drones. In addition, the proposed system minimizes the learning time by flexibly changing the number of steps used for parameter learning according to the deployment of new UAVs. The performance of the proposed system was verified through simulation experiments and theoretical analysis on various topologies consisting of multiple UAVs.
Even though wireless networks are inevitable in mobile or infrastructure-less communication systems, such as vehicle-to-everything (V2X) infrastructure in automobile, precise formation control of unmanned vehicles (UVs), or other industries that employ ad hoc deployment of systems, operation and maintenance of network applications additionally impose time constraints on the wireless network. Such the requirement poses an immediate challenge to the time-sensitive aspects of devices, applications and network control, which has been addressed in the realm of time-sensitive networking (TSN). Meanwhile, software-defined networking (SDN) has successfully presented its efficiencies in ensuring quality of service for network traffic to accommodate many functions of network control and management. In this regard, we propose a traffic engineering solution based on reinforcement learning (RL) to implement TSN links with SDN over the wireless network, then optimize the quality of TSN links, and protect background traffic from TSN-enabled but SDN-supported traffic. We implemented SDN-based TSN on a real testbed, consisting of real nodes as single board computers (SBCs) and an SDN controller, and applied RL-based network control solution to the network. The empirical results are promising in that the jitter of time-constrained traffic is improved by 24.6 % and throughput of background traffic is increased by 6.5 %, compared to the manual configuration mode.
Since unmanned aerial vehicles (UAVs), such as drones, are used in various fields due to their high utilization and agile mobility, technologies to deal with multiple UAVs are becoming more important. There are many advantages to using multiple drones in a swarm, but, at the same time, each drone requires a strong connection to some or all of the other drones. This paper presents a superior approach for the UAV network’s routing system without wasting memory and computing power. We design a routing system called the geolocation ad hoc network (GLAN) using geolocation information, and we build an adaptive GLAN (AGLAN) system that applies reinforcement learning to adapt to the changing environment. Furthermore, we increase the learning speed by applying a pseudo-attention function to the existing reinforcement learning. We evaluate the proposed system against traditional routing algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.