SUMMARY Mechanical allodynia, induced by normally innocuous low-threshold mechanical stimulation, represents a cardinal feature of neuropathic pain. Blockade or ablation of high-threshold small-diameter unmyelinated C-fibers has limited effects on mechanical allodynia1–4. While large myelinated A-fibers, in particular Aβ-fibers, have previously been implicated in mechanical allodynia5–7, an A-fiber-selective pharmacological blocker is still lacking. Here we report a new method for targeted silencing of A-fibers in neuropathic pain. We found that Toll-like receptor 5 (TLR5) is co-expressed with neurofilament-200 in large-diameter A-fiber neurons in the dorsal root ganglion (DRG). Activation of TLR5 with its ligand flagellin results in neuronal entry of the membrane impermeable lidocaine derivative QX-314, leading to TLR5-dependent blockade of sodium currents predominantly in A-fiber neurons of mouse DRGs. Intraplantar co-application of flagellin and QX-314 (flagellin/QX-314) dose-dependently suppressed mechanical allodynia following chemotherapy, nerve injury, and diabetic neuropathy, but this blockade is abrogated in Tlr5-deficient mice. In vivo electrophysiology demonstrated that flagellin/QX-314 co-application selectively suppressed Aβ-fiber conduction in naive and chemotherapy-treated mice. TLR5-mediated Aβ blockade but not capsaicin-mediated C-fiber blockade also reduced chemotherapy-induced ongoing pain without impairing motor function. Finally, flagellin/QX-314 co-application suppressed sodium currents in large-diameter human DRG neurons. Thus, our findings provide a new tool for targeted silencing of Aβ-fibers and neuropathic pain treatment.
The mechanisms of pain induction by inflammation have been extensively studied. However, the mechanisms of pain resolution are not fully understood. Here, we report that GPR37, expressed by macrophages (MΦs) but not microglia, contributes to the resolution of inflammatory pain. Neuroprotectin D1 (NPD1) and prosaptide TX14 increase intracellular Ca2+ (iCa2+) levels in GPR37-transfected HEK293 cells. NPD1 and TX14 also bind to GPR37 and cause GPR37-dependent iCa2+ increases in peritoneal MΦs. Activation of GPR37 by NPD1 and TX14 triggers MΦ phagocytosis of zymosan particles via calcium signaling. Hind paw injection of pH-sensitive zymosan particles not only induces inflammatory pain and infiltration of neutrophils and MΦs, but also causes GPR37 upregulation in MΦs, phagocytosis of zymosan particles and neutrophils by MΦs in inflamed paws, and resolution of inflammatory pain in WT mice. Mice lacking Gpr37 display deficits in MΦ phagocytic activity and delayed resolution of inflammatory pain. Gpr37-deficient MΦs also show dysregulations of proinflammatory and antiinflammatory cytokines. MΦ depletion delays the resolution of inflammatory pain. Adoptive transfer of WT but not Gpr37-deficient MΦs promotes the resolution of inflammatory pain. Our findings reveal a previously unrecognized role of GPR37 in regulating MΦ phagocytosis and inflammatory pain resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.