Circular dichroism (CD) is a physical property observed in chiral molecules by inducing the difference of absorption between left- and right-handed circularly polarized light (CPL). Circular dichroism spectroscopy is widely used in the field of chemistry and biology to distinguish the enantiomers, which typically show either positive or severe side effects in biological applications depending on the molecular structures’ chirality. To effectively detect the chirality of molecules, diverse designs of nanostructured platforms are proposed based on optical resonances that can enhance the optical chirality and amplify the signal of circular dichroism. However, the underlying physics between the optical chirality and the resonance in a nanostructure is largely unexplored, and thus designing rules for optimal chiral detection is still elusive. Here, we carry out an in-depth analysis of chiral enhancement (C enhancement) in nanostructured surfaces to find the relationship between optical resonances and chirality. Based on the relations, we optimize the nanostructured metasurface to induce effective chiral detection of enantiomers for diverse conditions of molecule distribution. We believe that the proposed designing rules and physics pave the important pathway to enhance the optical chirality for effective circular dichroism spectroscopy.
Splitting the spectrum of incident light at nanoscale has been of great scientific and practical interest due to its potential application in various optical sensors. For many years, researchers have been striving to realize the full-color sorting of light at subwavelength scale, while keeping the loss of incident photons to a minimum. In this article, we present semiconductor-based metasurfaces that facilitate the efficient sorting of full-color by inducing anti-Hermitian coupling between multiple nanoantenna arrays. To achieve this, we first explore how the coherent interactions between maximally crafted nanoantennas in the metasurfaces can be effectively controlled by judiciously positioning them in both lateral and vertical directions, which leads to the switched coupling of light at each target position. Based on the analysis, we demonstrate a metasurface-based absorber that features efficient, spectropolarimetric detections over the entire visible spectrum, ranging from 470 to 630 nm. In addition, the metasurface detects relatively narrow spectral linewidth of 60 nm and shows the sensitivity up to 70%, which surpasses the previous works on subwavelength photon sorting or color filter-based detection system. We envision that our approach provides guidelines for realizing the metasurfaces with enhanced functionalities, that is the increase of spectral channels for detection in a given subwavelength-scaled unit cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.