Background
Early posttraumatic seizure (PTS) is a significant cause of unfavorable outcomes in traumatic brain injury (TBI). This study was aimed to investigate the incidence and determine a predictive model for early PTS.
Materials and Methods
A prospective cohort study of 484 TBI patients was conducted. All patients were evaluated for seizure activities within 7 days after the injury. Risk factors for early PTS were identified using univariate analysis. The candidate risk factors with
p
< 0.1 were selected into multivariable logistic regression analysis to identify predictors of early PTS. The fitting model and the power of discrimination with the area under the receiver operating characteristic (AUROC) curve were demonstrated. The nomogram for prediction of early PTS was developed for individuals.
Results
There were 27 patients (5.6%) with early PTS in this study. The final model illustrated chronic alcohol use (odds ratio [OR]: 4.06, 95% confidence interval [CI]: 1.64–10.07), epidural hematoma (OR: 3.98, 95% CI: 1.70–9.33), and Glasgow Coma Scale score 3–8 (OR: 3.78, 95% CI: 1.53–9.35) as predictors of early PTS. The AUROC curve was 0.77 (95% CI: 0.66–0.87).
Conclusions
The significant predictors for early PTS were chronic alcohol use, epidural hematoma, and severe TBI. Our nomogram was considered as a reliable source for prediction.
Background Prognosis of low-grade glioma are currently determined by genetic markers that are limited in some countries. This study aimed to use clinical parameters to develop a nomogram to predict survival of patients with diffuse astrocytoma (DA) which is the most common type of low-grade glioma. Materials and Methods Retrospective data of adult patients with DA from three university hospitals in Thailand were analyzed. Collected data included clinical characteristics, neuroimaging findings, treatment, and outcomes. Cox's regression analyses were performed to determine associated factors. Significant associated factors from the Cox regression model were subsequently used to develop a nomogram for survival prediction. Performance of the nomogram was then tested for its accuracy. Results There were 64 patients with DA with a median age of 39.5 (interquartile range [IQR] = 20.2) years. Mean follow-up time of patients was 42 months (standard deviation [SD] = 34.3). After adjusted for three significant factors associated with survival were age ≥60 years (hazard ratio [HR] = 5.8; 95% confidence interval [CI]: 2.09-15.91), motor response score of Glasgow coma scale < 6 (HR = 75.5; 95% CI: 4.15-1,369.4), and biopsy (HR = 0.45; 95% CI: 0.21-0.92). To predict 1-year mortality, sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and area under the curve our nomogram was 1.0, 0.50, 0.45, 1.0, 0.64, and 0.75, respectively. Conclusions This study provided a nomogram predicting prognosis of DA. The nomogram showed an acceptable performance for predicting 1-year mortality.
AbstractKeywords ► diffuse astrocytoma ► nomogram ► survival analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.