Bacillus subtilis vaccine strains engineered to express either group A bovine or murine rotavirus VP6 were tested in adult mice for their ability to induce immune responses and provide protection against rotavirus challenge. Mice were inoculated intranasally with spores or vegetative cells of the recombinant strains of B. subtilis. To enhance mucosal immunity, whole cholera toxin (CT) or a mutant form (R192G) of Escherichia coli heat-labile toxin (mLT) were included as adjuvants. To evaluate vaccine efficacy, the immunized mice were challenged orally with EDIM EW murine rotavirus and monitored daily for 7 days for virus shedding in feces. Mice immunized with either VP6 spore or VP6 vegetative cell vaccines raised serum anti-VP6 IgG enzymelinked immunosorbent assay (ELISA) titers, whereas only the VP6 spore vaccines generated fecal anti-VP6 IgA ELISA titers. Mice in groups that were immunized with VP6 spore vaccines plus CT or mLT showed significant reductions in virus shedding, whereas the groups of mice immunized with VP6 vegetative cell vaccines showed no difference in virus shedding compared with mice immunized with control spores or cells. These results demonstrate that intranasal inoculation with B. subtilis spore-based rotavirus vaccines is effective in generating protective immunity against rotavirus challenge in mice.
Recent reports highlighting the global significance of cryptosporidiosis among children have renewed efforts to develop control measures. We evaluated the efficacy of bumped kinase inhibitor (BKI) 1369 in the gnotobiotic piglet model of acute diarrhea caused by , the species responsible for most human cases. Five-day treatment with BKI 1369 reduced signs of disease early during treatment compared to those of untreated animals. Piglets treated with BKI 1369 exhibited significant reductions of oocyst excretion, mucosal colonization by, and mucosal lesions, which resulted in considerable symptomatic improvement. BKI 1369 reduced the parasite burden and disease severity in the gnotobiotic pig model. Together these data suggest that a BKI-mediated therapeutic may be an effective treatment against cryptosporidiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.