As for the measurement of diffusion coefficient in transparent liquids by digital holographic interferometry, there are many kinds depending on the mathematical model and experimental setup. The method of using the distance of the peaks in concentration difference profile to determine diffusion coefficient by Mach-Zehnder interferometric experimental setup, is easy to handle. In order to improve the accuracy and convenience of measurement in this method, we combine procedures of hologram analysis used by Mialdun et al (2011) and those by He et al (2009). By using polynomial to fit the continuous phase difference (interference phase) of object beam, it can be more convenient and accurate to determine the distance between the two peaks. Besides, the shift of initial time has been discussed as a separated topic at the first time and two functions for minimization have been given for determination of the initial time in this paper. With the development, diffusion coefficient of KCl in water at 0.33mol/L and 25 °C has been measured. The diffusion coefficient is 1.844 × 10(-9) m2/s with the uncertainty of ± 0.012 × 10(-9) m2/s. Our measurement has more similar result with other methods than holographic interferometry. The relative uncertainty of diffusion coefficient in our experiment is less than 1% and total uncertainty of temperature is within ± 0.04 K.
In the measurement of the diffusion coefficient by digital holographic interferometry, the conformity between the experiment and the ideal physical model is lacking analysis. Two data processing methods are put forward to overcome this problem. By these methods, it is found that there is obvious asymmetry in the experiment and the asymmetry is becoming smaller with time. Besides, the initial time for diffusion cannot be treated as a constant throughout the whole experiment. This means that there is a difference between the experiment and the physical model. With these methods, the diffusion coefficient of KCl in water at 0.33 mol/L and 25°C is measured. When the asymmetry is ignored, the result is 1.839×10(-9) m2/s, which is in good agreement with the data in the literature. Because the asymmetry is becoming smaller with time, the experimental data in the latter time period conforms to the ideal physical model. With this idea, a more accurate diffusion coefficient is 2.003×10(-9) m2/s, which is about 10% larger than the data in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.