As electricity supply expands, it is essential for providers to predict and analyze consumer electricity patterns to plan effective electricity supply policies. In general, electricity consumption data take the form of time series data, and to analyze the data, it is first necessary to check if there is no data contamination. For this, the process of verifying that there are no abnormalities in the data is essential. Especially for power data, anomalies are often recorded over multiple time units rather than a single point. In addition, due to various external factors, each set of power consumption data does not have consistent data features, so the importance of pre-clustering is highlighted. In this paper, we propose a method using a CNN model using pre-clustering-based time series images to detect anomalies in time series power usage data. For pre-clustering, the performances were compared using k-means, k-shapes clustering, and SOM algorithms. After pre-clustering, a method using the ARIMA model, a statistical technique for anomaly detection, and a CNN-based model by converting time series data into images compared the methods used. As a result, the pre-clustered data produced higher accuracy anomaly detection results than the non-clustered data, and the CNN-based binary classification model using time series images had higher accuracy than the ARIMA model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.