We propose a domain adaptation method, MoDA, which adapts a pretrained embodied agent to a new, noisy environment without ground-truth supervision. Map-based memory provides important contextual information for visual navigation, and exhibits unique spatial structure mainly composed of flat walls and rectangular obstacles. Our adaptation approach encourages the inherent regularities on the estimated maps to guide the agent to overcome the prevalent domain discrepancy in a novel environment. Specifically, we propose an efficient learning curriculum to handle the visual and dynamics corruptions in an online manner, self-supervised with pseudo clean maps generated by style transfer networks. Because the map-based representation provides spatial knowledge for the agent's policy, our formulation can deploy the pretrained policy networks from simulators in a new setting. We evaluate MoDA in various practical scenarios and show that our proposed method quickly enhances the agent's performance in downstream tasks including localization, mapping, exploration, and point-goal navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.