Pre-trained language models have achieved state-of-the-art accuracies on various text classification tasks, e.g., sentiment analysis, natural language inference, and semantic textual similarity. However, the reliability of the fine-tuned text classifiers is an often underlooked performance criterion. For instance, one may desire a model that can detect out-of-distribution (OOD) samples (drawn far from training distribution) or be robust against domain shifts. We claim that one central obstacle to the reliability is the over-reliance of the model on a limited number of keywords, instead of looking at the whole context. In particular, we find that (a) OOD samples often contain in-distribution keywords, while (b) cross-domain samples may not always contain keywords; over-relying on the keywords can be problematic for both cases. In light of this observation, we propose a simple yet effective fine-tuning method, coined masked keyword regularization (MASKER), that facilitates context-based prediction. MASKER regularizes the model to reconstruct the keywords from the rest of the words and make low-confidence predictions without enough context. When applied to various pre-trained language models (e.g., BERT, RoBERTa, and ALBERT), we demonstrate that MASKER improves OOD detection and cross-domain generalization without degrading classification accuracy. Code is available at https://github.com/alinlab/MASKER.
In the deep learning era, long video generation of high-quality still remains challenging due to the spatio-temporal complexity and continuity of videos. Existing prior works have attempted to model video distribution by representing videos as 3D grids of RGB values, which impedes the scale of generated videos and neglects continuous dynamics. In this paper, we found that the recent emerging paradigm of implicit neural representations (INRs) that encodes a continuous signal into a parameterized neural network effectively mitigates the issue. By utilizing INRs of video, we propose dynamics-aware implicit generative adversarial network (DI-GAN), a novel generative adversarial network for video generation. Specifically, we introduce (a) an INR-based video generator that improves the motion dynamics by manipulating the space and time coordinates differently and (b) a motion discriminator that efficiently identifies the unnatural motions without observing the entire long frame sequences. We demonstrate the superiority of DIGAN under various datasets, along with multiple intriguing properties, e.g., long video synthesis, video extrapolation, and non-autoregressive video generation. For example, DIGAN improves the previous state-of-the-art FVD score on UCF-101 by 30.7% and can be trained on 128 frame videos of 128×128 resolution, 80 frames longer than the 48 frames of the previous state-of-the-art method. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.