Artificial intelligence (AI) is envisioned to play a key role in future wireless technologies, with deep neural networks (DNNs) enabling digital receivers to learn to operate in challenging communication scenarios. However, wireless receiver design poses unique challenges that fundamentally differ from those encountered in traditional deep learning domains. The main challenges arise from the limited power and computational resources of wireless devices, as well as from the dynamic nature of wireless communications, which causes continual changes to the data distribution. These challenges impair conventional AI based on highly-parameterized DNNs, motivating the development of adaptive, flexible, and light-weight AI for wireless communications, which is the focus of this article. Here, we propose that AI-based design of wireless receivers requires rethinking of the three main pillars of AI: architecture, data, and training algorithms. In terms of architecture, we review how to design compact DNNs via model-based deep learning. Then, we discuss how to acquire training data for deep receivers without compromising spectral efficiency. Finally, we review efficient, reliable, and robust training algorithms via meta-learning and generalized Bayesian learning. Numerical results are presented to demonstrate the complementary effectiveness of each of the surveyed methods. We conclude by presenting opportunities for future research on the development of practical deep receivers.
The dynamic scheduling of ultra-reliable and lowlatency communication traffic (URLLC) in the uplink can significantly enhance the efficiency of coexisting services, such as enhanced mobile broadband (eMBB) devices, by only allocating resources when necessary. The main challenge is posed by the uncertainty in the process of URLLC packet generation, which mandates the use of predictors for URLLC traffic in the coming frames. In practice, such prediction may overestimate or underestimate the amount of URLLC data to be generated, yielding either an excessive or an insufficient amount of resources to be pre-emptively allocated for URLLC packets. In this letter, we introduce a novel scheduler for URLLC packets that provides formal guarantees on reliability and latency irrespective of the quality of the URLLC traffic predictor. The proposed method leverages recent advances in online conformal prediction (CP), and follows the principle of dynamically adjusting the amount of allocated resources so as to meet reliability and latency requirements set by the designer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.