Field evaluation of distresses in continuously reinforced concrete pavement (CRCP) indicated punch-out distress associated with horizontal cracking at the depth of the longitudinal steel is the most severe performance problem in CRCP. The developed 3-D model was used to perform a parametric analysis to determine the effects of critical loading location, concrete properties, and longitudinal steel design on horizontal cracking potential. The maximum vertical tensile stresses in the concrete were slightly affected by the coefficient of thermal expansion of the concrete. The critical tensile stresses in the concrete were observed to decrease as the base modulus, slab–base friction, slab thickness, and transverse crack spacing increase. The vertical tensile stresses significantly decreased when the longitudinal steel spacing decreased. The use of varying longitudinal steel spacing and reducing the depth of steel may be one of the ways to reduce the horizontal cracking potential without changing the steel ratio of the slab.
A full-scale jointed plain concrete pavement (JPCP) with two different dowel bar arrangements, namely, standard and special method, was constructed and evaluated under actual traffic-environmental condition in Florida. For standard dowel bar arrangement, dowel bars spaced at 304.8 mm (12 in), while three dowel bars spaced at 304.8 mm (12 in) only within the wheel paths were installed for special dowel bar arrangement. Field performance evaluation was conducted in terms of longitudinal crack, transverse crack, corner crack, spalling, and load transfer efficiency (LTE). Also, a three-dimensional (3-D) finite element (FE) model was developed to evaluate change in structural response characteristics due to different dowel bar arrangements under the critical loading condition. The developed FE model was used to perform a parametric analysis to determine the effects of different dowel bar arrangements. Results indicated that no significant changes in pavement structural responses, including the slab stresses and deflections, were predicted between two dowel bar arrangements that may result in no significant difference in expected performance for the test slabs evaluated, and this matched well with results of field performance evaluation. Also, it was indicated that the base modulus plays an important role on the dowel-joint behavior and stiffer base condition could significantly improve the dowel-joint performance. Therefore, when the base layer is stiff enough to support the slab deflection and resist erosion (e.g., AC layer), special dowel bar arrangement could provide similar performance as compared to standard dowel bar arrangement that result in significant cost savings without any negative effects on expected pavement performance.
Abstract:The main objective was to develop mix designs for concrete incorporating minimally processed reclaimed asphalt pavement (RAP) materials to be used in the Florida Concrete Test Road. The laboratory program was conducted in two phases. Phase I involved testing of twelve (12) trial mixes to identify feasible mixes which could meet the Florida Department of Transportation (FDOT) specification requirements for pavement concrete. Based on the preliminary test results from the trial mixes, ten (10) production mixes were identified and evaluated more extensively in Phase II to establish the optimum concrete mixes incorporating RAP to be recommended. Concrete mixtures, with 0% to 40% RAP as aggregate replacement and using 20% fly ash and 50% slag as cement replacement, were designed using the optimized aggregate gradation (OAG) technique instead of the American Concrete Institute (ACI) method. Among the RAP concrete evaluated, the 20% RAP concrete mixes with 0%, 20% fly ash, and 50% slag as cement replacement were able to meet Florida Department of Transportation's (FDOT) over-design compressive strength of 29 MPa (4200 psi) at 28 days. Using 20% and 40% RAP in concrete could result in saving in the total cost of aggregate by 9% and 17%, respectively. When the RAP is not refined (e.g., no washing of RAP, and no separating of coarse and fine portions), it is recommended that 20% of RAP can be used as aggregate replacement in pavement concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.