Type 2 melastatin-related transient receptor potential channel (TRPM2), a member of the melastatin-related TRP (transient receptor potential) subfamily is a Ca2+-permeable channel activated by hydrogen peroxide (H2O2). We have investigated the role of TRPM2 channels in mediating the H2O2-induced increase in the cytoplasmic free Ca2+ concentration ([Ca2+]i) in insulin-secreting cells. In fura-2 loaded INS-1E cells, a widely used model of β-cells, and in human β-cells, H2O2 increased [Ca2+]i, in the presence of 3 mM glucose, by inducing Ca2+ influx across the plasma membrane. H2O2-induced Ca2+ influx was not blocked by nimodipine, a blocker of the L-type voltage-gated Ca2+ channels nor by 2-aminoethoxydiphenyl borate, a blocker of several TRP channels and store-operated channels, but it was completely blocked by N-(p-amylcinnamoyl)anthranilic acid (ACA), a potent inhibitor of TRPM2. Adenosine diphosphate phosphate ribose, a specific activator of TRPM2 channel and H2O2, induced inward cation currents that were blocked by ACA. Western blot using antibodies directed to the epitopes on the N-terminal and on the C-terminal parts of TRPM2 identified the full length TRPM2 (TRPM2-L), and the C-terminally truncated TRPM2 (TRPM2-S) in human islets. We conclude that functional TRPM2 channels mediate H2O2-induced Ca2+ entry in β-cells, a process potently inhibited by ACA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.