We study the cosmological evolution and phenomenological properties of scalar bosons in the keV to MeV range that have a tiny mixing with the Standard Model Higgs boson. The mixing determines both the abundance of light scalars produced via the freezein mechanism and their lifetime. Intriguingly, the parameters required for such scalars to account for all of the dark matter in the present Universe generically predict lifetimes comparable to the sensitivity of present and future indirect detection experiments. In order to accurately determine the relic abundance of light scalars, we calculate freeze-in yields including effects from finite temperatures and quantum statistics and develop a new approach for solving the Boltzmann equation for number-changing processes in the dark sector. We find that light scalars can potentially explain the anomalous x-ray emission at 3.5 keV, while evading constraints from structure formation and predicting potentially observable self-interaction cross sections.
New gauge bosons at the MeV scale with tiny gauge couplings (so-called dark photons) can be responsible for the freeze-in production of dark matter and provide a clear target for present and future experiments. We study the effects of thermal mixing between dark photons and Standard Model gauge bosons and of the resulting plasmon decays on dark matter production before and after the electroweak phase transition. In the parameter regions preferred by the observed dark matter relic abundance, the dark photon is sufficiently long-lived to be probed with fixed-target experiments and light enough to induce direct detection signals. Indeed, current limits from XENON1T already constrain Dirac fermion dark matter in the GeV to TeV range produced via the freeze-in mechanism. We illustrate our findings for the case of a U (1)B−L gauge extension and discuss possible generalisations.
Relic density calculations of dark matter freezing out from the primordial plasma have reached a high level of sophistication, with several numerical tools readily available that match the observationally required accuracy. Dark matter production via the freeze-in mechanism, on the other hand, is sensitive to much higher temperatures than in the freeze-out case, implying both technical and computational difficulties when aiming for the same level of precision. We revisit the formulation of freeze-in production in a way that facilitates the inclusion of in-medium corrections like plasma effects and the spin statistics of relativistic quantum gases, as well as the temperature dependence of dark matter production rates induced by the electroweak and strong phase transitions, and we discuss in detail the additional complications arising in the presence of s-channel resonances. We illustrate our approach in the context of Higgs portal models, and provide the most accurate calculation to date of the freeze-in abundance of Scalar Singlet dark matter. We explore in particular the case of small reheating temperatures, for which the couplings implied by the freeze-in mechanism may be testable at the LHC. Together with this article we present a major update 6.3 of DarkSUSY with the added capability of performing general freeze-in calculations, including all complications mentioned above.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.