Lake Tanganyika, the oldest of the East African Great Lakes, harbors the ecologically, morphologically, and behaviorally most complex of all assemblages of cichlid fishes, consisting of about 200 described species. The evolutionary old age of the cichlid assemblage, its extreme degree of morphological differentiation, the lack of species with intermediate morphologies, and the rapidity of lineage formation have made evolutionary reconstruction difficult. The number and origin of seeding lineages, particularly the possible contribution of riverine haplochromine cichlids to endemic lacustrine lineages, remains unclear. Our phylogenetic analyses, based on mitochondrial DNA sequences of three gene segments of 49 species (25% of all described species, up to 2,400 bp each), yield robust phylogenies that provide new insights into the Lake Tanganyika adaptive radiation as well as into the origin of the Central- and East-African haplochromine faunas. Our data suggest that eight ancient African lineages may have seeded the Tanganyikan cichlid radiation. One of these seeding lineages, probably comprising substrate spawning Lamprologus-like species, diversified into six lineages that evolved mouthbrooding during the initial stage of the radiation. All analyzed haplochromines from surrounding rivers and lakes seem to have evolved within the radiating Tanganyikan lineages. Thus, our findings contradict the current hypothesis that ancestral riverine haplochromines colonized Lake Tanganyika to give rise to at least part of its spectacular endemic cichlid species assemblage. Instead, the early phases of the Tanganyikan radiation affected Central and East African rivers and lakes. The haplochromines may have evolved in the Tanganyikan basin before the lake became a hydrologically and ecologically closed system and then secondarily colonized surrounding rivers. Apparently, therefore, the current diversity of Central and East African haplochromines represents a relatively young and polyphyletic fauna that evolved from or in parallel to lineages now endemic to Lake Tanganyika.
Water level fluctuations are important modulators of speciation processes in tropical lakes, in that they temporarily form or break down barriers to gene flow among adjacent populations and/or incipient species. Time estimates of the most recent major lowstands of the three African Great Lakes are thus crucial to infer the relative timescales of explosive speciation events in cichlid species flocks. Our approach combines geological evidence with genetic divergence data of cichlid fishes from the three Great East African Lakes derived from the fastest-evolving mtDNA segment. Thereby, we show for each of the three lakes that individuals sampled from several populations which are currently isolated by long geographic distances and/or deep water form clusters of equally closely related haplotypes. The distribution of identical or equally closely related haplotypes in a lake basin allows delineation of the extent of lake level fluctuations. Our data suggest that the same climatic phenomenon synchronized the onset of genetic divergence of lineages in all three species flocks, such that their most recent evolutionary history seems to be linked to the same external modulators of adaptive radiation. A calibration of the molecular clock of the control region was elaborated by gauging the age of the Lake Malawi species flock through the divergence among the utaka-cichlid and the mbuna-cichlid lineages to minimally 570,000 years and maximally 1 Myr. This suggests that the low-lake-level period which established the observed patterns of genetic relatedness dates back less than 57,000 years, probably even to 17,000-12,400 years ago, when Lake Victoria dried up and Lakes Malawi and Tanganyika were also low. A rapid rise of all three lakes about 11,000 years ago established the large-scale population subdivisions observed today. Over that period of time, a multitude of species originated in Lakes Malawi and Victoria with an impressive degree of morphological and ecological differentiation, whereas the Tanganyikan taxa that were exposed to the same habitat changes hardly diverged ecologically and morphologically. Our findings also show that patterns of genetic divergences of stenotopic organisms provide valuable feedback on geological and sedimentological time estimates for lake level changes.
Speciation caused by introgressive hybridization occurs frequently in plants but its importance remains controversial in animal evolution. Here we report a case of introgressive hybridization between two ancient and genetically distinct species of Lake Tanganyika cichlids that led to the formation of a new species. Neolamprologus marunguensis contains mtDNA haplotypes from both parental species varying on average by 12.4% in the first section of the control region and by 5.2% in a segment of the cytochrome b gene. All individuals have almost identical DNA sequences in the flanking regions of the single-copy nuclear DNA locus TmoM27, and show a mosaic of alleles derived from both parental lineages in six microsatellite loci. Hence, our finding displays another mode of speciation in cichlid fishes. The increase of genetic and phenotypic diversity due to hybridization may contribute to the uniquely rapid pace of speciation in cichlids.
Lake Tanganyika harbors the oldest and most diverse species flock of cichlid fish. Many species are subdivided into numerous genetically and phenotypically distinct populations. Their present distribution and genetic structure were shaped by a series of lake level fluctuations which caused cycles of isolation and admixis and promoted dispersal events. One of the best examples of this phenomenon is the genus Tropheus. We present a comprehensive mtDNA phylogeny based upon 365 individuals of 55 populations from all over Lake Tanganyika, which suggests an almost-contemporaneous origin of eight major mitochondrial lineages about 700 Ka ago. While the distribution of seven lineages is restricted to particular sections of the lake shore, one lineage was found to have a much more widespread distribution. This particular lineage is subdivided into four sublineages which seem to have originated from a single dispersal event about 400 Ka. By using a molecular clock estimate in combination with geological data we derived a hypothetical scenario for the colonization history of Tropheus. Thereby we show a high degree of concordance between major changes of the lake level in the recent history of Lake Tanganyika and three distinct diversification events in this genus.
Abstract. Species richness and geographical phenotypic variation in East African lacustrine cichlids are often correlated with ecological specializations and limited dispersal. This study compares mitochondrial and microsatellite genetic diversity and structure among three sympatric rock-dwelling cichlids of Lake Tanganyika, Eretmodus cyanostictus, Tropheus moorii, and Ophthalmotilapia ventralis. The species represent three endemic, phylogenetically distinct tribes (Eretmodini, Tropheini, and Ectodini), and display divergent ecomorphological and behavioral specialization. Sample locations span both continuous, rocky shoreline and a potential dispersal barrier in the form of a muddy bay. High genetic diversity and population differentiation were detected in T. moorii and E. cyanostictus, whereas much lower variation and structure were found in O. ventralis. In particular, while a 7-kmwide muddy bay curtails dispersal in all three species to a similar extent, gene flow along mostly continuous habitat appeared to be controlled by distance in E. cyanostictus, further restricted by site philopatry and/ or minor habitat discontinuities in T. moorii, and unrestrained in O. ventralis. In contrast to the general pattern of high gene flow along continuous shorelines in rock-dwelling cichlids of Lake Malawi, our study identifies differences in population structure among stenotopic Lake Tanganyika species. The amount of genetic differentiation among populations was not related to the degree of geographical variation of body color, especially since more phenotypic variation is observed in O. ventralis than in the genetically highly structured E. cyanostictus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.