Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care.
Our current understanding of the importance of surface-active substances (SAS) on atmospheric aerosol cloud-forming efficiency is limited, as explicit data on the content of size-resolved ambient aerosol SAS, which are responsible for lowering the surface tension (σ) of activating droplets, are not available. We report on the first data comprising seasonal variability of size-segregated SAS concentrations in ambient aerosol particulate matter (PM). To assess the impact of SAS distribution within PM on cloud droplet activation and growth, a concept of surfactant activity was adopted and a parametrization developed; i.e., surfactant activity factor (SAF) was defined, which allowed translation of experimental data for use in cloud parcel modeling. The results show that SAS-induced σ depression during cloud activation may affect droplet number ( N) as much as a 2-fold increase in particle number, whereas by considering also the size distribution of particulate SAS, N may increase for another 10%. This study underscores the importance of size-resolved SAS perspective on cloud activation, as data typically obtained from aqueous extracts of PM and PM may result in misleading conclusions about droplet growth due to large mass fractions of supermicron particles with SAS deficit and little or no influence on CCN and N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.