Olive oil cake is a by-product from the olive oil processing industry and can be used for the lipase and protease production by Candida utilis in solid state fermentation. Different carbon and nitrogen sources were evaluated, and the results showed that the supplementation of the substrate with maltose and starch as carbon sources and yeast extract as a nitrogen source significantly increased the lipase production. The best results were obtained with maltose, whereas rather low lipase and protease activities were found with glucose and oleic acid. Response surface methodology and a five-level-three-factor central composite rotatable design were used to evaluate the effects of the initial moisture content, inoculum size and fermentation time on both lipase and protease activity levels. A lipase activity value of ≈25 U g(-1) and a protease activity value of 110 U g(-1) were obtained under the optimized fermentation conditions. An alkaline treatment of the substrate appeared to be efficient, leading to increases of 39% and 133% in the lipase and protease production, respectively. The results showed that the olive cake could be a good source for enzyme production by solid state fermentation.
in the second case (28.80 ± 0.07 vs. 20.46 ± 0.39 %). The fraction obtained by the ultrasound pretreatment containing peptides with a molecular weight between 1 and 10 kDa demonstrated the strongest ABTS radical scavenging efficacy among the fractions (97.54 ± 0.30) with IC 50 value of 4.31 mg/mL. Compared with single-enzyme processes, the two-stage enzymatic processes did not significantly improve both antioxidant and functional hydrolysates' properties.
β-galactosidase, commonly known as lactase, represents commercially important enzyme that is prevalently used for lactose hydrolysis in milk and whey. To the date, it has been isolated from various sources. In this study different strains of lactic acid bacteria were assessed for their β-galactosidase productivity, and Lactobacillus acidophilus ATCC 4356 resulted with the highest production potential. Thereafter, optimal conditions for accomplishing high yields of β-galactosidase activity were determined. Maximal specific activity (1.01 IU mL-1) was accomplished after 2 days shake flask culture fermentation (150 rpm) at 37 °C, with modified Man Rogosa Sharpe culture broth using lactose (2.5%) as sole carbon source. Finally, in order to intensify release of intracellular β-galactosidase different mechanical and chemical methods were conducted. Nevertheless, vortexing with quartz sand (150 µm) as abrasive was proven to be the most efficient method of cell disruption. The optimum temperature of obtained β-galactosidase was 45 °C and the optimum range pH 6.5-7.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.