Study of the late Quaternary geomagnetic field contributes significantly to understanding the origin of millennial‐scale paleomagnetic secular variations, the structure of geomagnetic excursions, and the long‐term shielding by the geomagnetic field. A compilation of paleomagnetic sediment records and archeomagnetic and lava flow data covering the past 100 ka enables reconstruction of the global geomagnetic field on such long‐term scales. We use regularized inversion to build the first global, time‐dependent, geomagnetic field model spanning the past 100 ka, named GGF100k (Global Geomagnetic Field over the past 100 ka). Spatial parametrization of the model is in spherical harmonics and time variations with cubic splines. The model is heavily constrained by more than 100 continuous sediment records covering extended periods of time, which strongly prevail over the limited number of discrete snapshots provided by archeomagnetic and volcanic data. Following an assessment of temporal resolution in each sediment's magnetic record, we have introduced smoothing kernels into the forward modeling when assessing data misfit. This accommodates the smoothing inherent in the remanence acquisition in individual sediment paleomagnetic records, facilitating a closer fit to both high‐ and low‐resolution records in regions where some sediments have variable temporal resolutions. The model has similar spatial resolution but less temporal complexity than current Holocene geomagnetic field models. Using the new reconstruction, we discuss dipole moment variations, the time‐averaged field, and paleomagnetic secular variation activity. The new GGF100k model fills the gap in the geomagnetic power spectrum in the frequency range 100–1,000 Ma−1.
Data-based global paleomagnetic field models provide a more complete view of geomagnetic excursions than individual records. They allow the temporal and spatial field evolution to be mapped globally, and facilitate investigation of dipole and non-dipole field components. We have developed a suite of spherical harmonic (SH) field models that span 50-30 ka and include the Laschamp (∼41 ka) and Mono Lake (∼33 ka) excursions. Paleomagnetic field models depend heavily on the data used in their construction. Variations in paleomagnetic sediment records from the same region are in some cases inconsistent. To test the influence of data selection and reliance on age models, we have built a series of SH models based upon different data sets. A number of excursion characteristics are robust in all models, despite some differences in energy distribution among SH coefficients. Quantities, such as field morphology at the core-mantle boundary (CMB) or individual SH degree power variations should be interpreted with caution. All models suggest that the excursion process during the Laschamp is mainly governed by axial dipole decay and recovery, without a significant influence from the equatorial dipole or non-dipole fields. The axial dipole component reduces to almost zero, but does not reverse. This results in excursional field behavior seen globally, but non-uniformly at Earth's surface. The Mono Lake excursion may be a series of excursions occurring between 36 and 30 ka rather than a single excursion. In contrast to the Laschamp, these excursions appear driven by smaller decreases in axial dipole field strength during a time when the axial dipole power at the CMB is similar to the power in the non-dipole field. We suggest three phases for the 50 to 30 ka period: (1) a broadly stable phase dominated by the axial dipole (50-43 ka); (2) the Laschamp excursion, with the underlying excursion process lasting ∼5 ka (43-38 ka) and the surface field expression lasting ∼2 ka (42-40 ka); (3) a weak phase during which axial dipole and non-dipole power at the CMB are comparable, leading to more than one excursion between 36 and 30 ka.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.