Dimethylbenzothiophenes are among the sulfur heterocycles in petroleum that are known to be degraded by microbial activity. Six of the 15 possible isomers of dimethylbenzothiophene were synthesized and used in bio-transformation studies with three Pseudomonas isolates that oxidize a variety of condensed thiophenes including methylbenzothiophenes and methyldibenzothiophenes. The isomers of dimethylbenzothiophene were chosen to have a variety of substitution patterns: both methyl groups on the thiophene ring (the 2,3-isomer); a methyl group on each of the rings (the 2,7-, 3,5-and 3,7-isomers); and both methyl groups on the benzene ring (the 4,6-and 4,7-isomers). Each isolate was grown on 1-methylnaphthalene or glucose in the presence of one of the dimethylbenzothiophenes and culture extracts were analyzed to identify nearly 30 sulfur-containing metabolites in total. Sulfoxides and sulfones were commonly found metabolites in culture extracts from the 2,3-, 2,7- and 3,7-isomers, whereas 2,3-diones, 3(2H)-ones and 2(3H)-ones were formed from the 4,6- and 4,7-isomers. High-molecular-weight products, some of which were tentatively identified as tetramethylbenzo[b]naphtho[1,2-d]thiophenes, were detected in the extracts of cultures incubated with 4,6- or 4,7-dimethylbenzothiophene. The methyl groups of all of the isomers, except 4,6-, were oxidized to give hydroxymethyl-methylbenzothiophenes and methylbenzothiophene-carboxylic acids, and these were the only products detected from the oxidation of 3,5-dimethylbenzothiophene.