The Nelder-Mead or simplex search algorithm is one of the best known algorithms for unconstrained optimization of non-smooth functions. Even though the basic algorithm is quite simple, it is implemented in many different ways. Apart from some minor computational details, the main difference between various implementations lies in the selection of convergence (or termination) tests, which are used to break the iteration process.A fairly simple efficiency analysis of each iteration step reveals a potential computational bottleneck in the domain convergence test. To be efficient, such a test has to be sublinear in the number of vertices of the working simplex. We have tested some of the most common implementations of the Nelder-Mead algorithm, and none of them is efficient in this sense.Therefore, we propose a simple and efficient domain convergence test and discuss some of its properties. This test is based on tracking the volume of the working simplex throughout the iterations. Similar termination tests can also be applied in some other simplex-based direct search methods.
A one-sided Jacobi hyperbolic singular value decomposition (HSVD) algorithm,
using a massively parallel graphics processing unit (GPU), is developed. The
algorithm also serves as the final stage of solving a symmetric indefinite
eigenvalue problem. Numerical testing demonstrates the gains in speed and
accuracy over sequential and MPI-parallelized variants of similar Jacobi-type
HSVD algorithms. Finally, possibilities of hybrid CPU--GPU parallelism are
discussed.Comment: Accepted for publication in BIT Numerical Mathematic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.