Probability distributions are omnipresent in data analysis. They are often used to model the natural uncertainty present in real phenomena or to describe the properties of a data set. Designing efficient visual metaphors to convey probability distributions is, however, a difficult problem. This fact is especially true for geographical data, where conveying the spatial context constrains the design space. While many different alternatives have been proposed to solve this problem, they focus on representing data variability. However, they are not designed to support spatial analytical tasks involving probability quantification. The present work aims to adapt recent non-spatial approaches to the geographical context, in order to support probability quantification tasks. We also present a user study that compares the efficiency of these approaches in terms of both accuracy and usability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.